Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Approximation

Approximation (lateinisch proximus, „der Nächste“) ist zunächst ein Synonym für eine „(An-)Näherung“; der Begriff wird in der Mathematik allerdings als Näherungsverfahren noch präzisiert.

Aus mathematischer Sicht existieren verschiedene Gründe, Näherungen zu untersuchen. Die heutzutage häufigsten sind:

  • Das approximative Lösen einer Gleichung. Ist eine analytisch exakte Lösung der Gleichung nicht verfügbar, so will man auf einfachem Wege eine Näherung der Lösung finden.
  • Die approximative Darstellung von Funktionen oder Zahlen. Ist ein explizit gegebenes mathematisches Objekt nur schwer handhabbar, dann ist eine Approximation aus einfachen Gebilden wünschenswert.
  • Die approximative Rekonstruktion unbekannter Funktionen aus unvollständigen Daten. Liegt die Information der unbekannten Funktion nur in diskreter Form, als Funktionswerte über gewissen Stützstellen vor, so ist eine geschlossene Darstellung, die Funktionswerte auf einem Kontinuum definiert, wünschenswert.

Vielfach liegt einer numerischen Methode die Idee zugrunde, eine komplizierte (und oft nur implizit bekannte) Funktion durch eine gut zu handhabende Funktionen näherungsweise darzustellen. Die Approximationstheorie ist somit integraler Bestandteil der modernen angewandten Mathematik. Sie liefert ein theoretisches Fundament für viele neue und etablierte computergestützte Lösungsverfahren.


Previous Page Next Page






تقريب Arabic Approksimasiya AZ Апраксімацыя BE Апраксымацыя BE-X-OLD Апроксимация Bulgarian Tostadur BR Aproximace Czech Аппроксимаци CV Brasamcan CY Approksimation Danish

Responsive image

Responsive image