Zufallsvariablen mit einer Bernoulli-Verteilung (auch als Bernoullische Verteilung[1], Null-Eins-Verteilung[1], Alternativ-Verteilung[2] oder Boole-Verteilung[3] bezeichnet) benutzt man zur Beschreibung von zufälligen Ereignissen, bei denen es nur zwei mögliche Versuchsausgänge gibt. Einer der Versuchsausgänge wird meistens mit Erfolg bezeichnet und der komplementäre Versuchsausgang mit Misserfolg. Die zugehörige Wahrscheinlichkeit für einen Erfolg nennt man Erfolgswahrscheinlichkeit und die Wahrscheinlichkeit eines Misserfolgs.
Beispiele:
Werfen eines Würfels, wobei nur eine „6“ als Erfolg gewertet wird: , .
Betrachte sehr kleines Raum/Zeit-Intervall: Ereignis tritt ein , tritt nicht ein .
Die Bezeichnung Bernoulli-Versuch (Bernoullian trials nach Jakob I Bernoulli) wurde erstmals 1937 in dem Buch Introduction to Mathematical Probability von James Victor Uspensky verwendet.[4]
↑ abP. H. Müller (Hrsg.): Lexikon der Stochastik – Wahrscheinlichkeitsrechnung und mathematische Statistik. 5. Auflage. Akademie-Verlag, Berlin 1991, ISBN 978-3-05-500608-1, S. 527.
↑Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung. 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin Heidelberg 2014, ISBN 978-3-642-45386-1, S.63, doi:10.1007/978-3-642-45387-8.