Inom matematiken är en bivektor eller 2-vektor en kvantitet inom yttre algebra eller geometrisk algebra som utökar idén om skalärer och vektorer. Om en skalär anses vara en kvantitet av ordning noll och en vektor av ordning ett, kan en bivektor anses vara av ordning två. Bivektorer har tillämpningar inom många områden av matematik och fysik. De är relaterade till komplexa tal i två dimensioner och till både pseudovektorer och kvaternioner i tre dimensioner. De kan användas för att generera rotationer i valfritt antal dimensioner och är ett användbart verktyg för att klassificera sådana rotationer. De används också inom fysiken och binder samman ett antal orelaterade mängder.
Bivektorer genereras av den yttre produkten på vektorer: givet två vektorer a och b, är deras yttre produkt en bivektor a ∧ b, liksom varje summa av bivektorer. Inte alla bivektorer kan genereras som en enda yttre produkt. Mer exakt kallas en bivektor som kan uttryckas som en yttre produkt enkel; i upp till tre dimensioner är alla bivektorer enkla, men för högre dimensioner är detta inte fallet. Bivektorn b ∧ a är negationen av bivektorn a ∧ b, vilket ger motsatt orientering och en bivektor a ∧ a är nollbivektorn.
Segment av parallella plan med samma orientering och area motsvarar samma bivektor a ∧ b. En enkel bivektor kan geometriskt tolkas som ett orienterat plant areasegment, på liknande sätt som vektorer kan anses vara riktade linjesegment[2]. Bivektorn a ∧ b har en magnitud lika med storleken av det område i parallellogrammen med sidorna a och b, som spänns upp av a och b och vars orientering är den rotation som skulle få a att sammanfalla med b. I lekmannatermer är varje yta samma bivektor om den har samma area, samma orientering och är parallell med ett givet plan.