Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Dilaton

Em física de partículas, um dilaton é uma partícula hipotética. Essa partícula aparece quando ocorrem compactações das dimensões extras na teoria de Kaluza-Klein, quando o volume das dimensões compactadas varia.

Trata-se de uma partícula de campo escalar Φ; um campo escalar que sempre surge com a gravidade. Na teoria padrão da relatividade geral, a constante de Newton, ou de maneira equivalente, a massa de Planck é sempre constante. Se "promover-mos" essa constante a um campo dinâmico, o que teríamos seria o dilaton.

Desse modo, nas teorias de Kaluza-Klein, após a redução dimensional, a massa de Planck efetiva varia como alguma potência do volume do espaço quantificado. É por isso que o volume pode se converter em dilatação na teoria efetiva de menos dimensões.

Apesar de a teoria das cordas incorporar naturalmente a teoria de Kaluza–Klein (a qual foi pioneira na introdução da dilatação), teorias das cordas perturbativas, como a teoria das cordas do tipo I, teoria das cordas do tipo II e a teoria das cordas heteróticas, já contêm a dilatação até o número máximo de 10 dimensões. Por outro lado, a teoria M em 11 dimensões não inclui a dilatação nesse espectro ao menos que estejam compactadas. De fato, a dilatação na teoria das cordas do tipo IIA é o rádion da teoria M compactado em um círculo, enquanto a dilatação na teoria das cordas E8 × E8 é o rádion para o modelo de Hořava–Witten. (Para mais detalhes sobre a origem da dilatação na teoria M, ver [1].)

Na teoria das cordas, há ainda uma dilatação na superfície do universo CFT. A exponencial desse valor esperado do vácuo determina a constante de acoplamento g, como ∫R = 2πχ para as superfícies do universo do teorema de Gauss-Bonnet e da característica de Euler χ = 2 − 2g, onde g é o gênero que conta o número de ansas e por tabela o número de loops ou interações das cordas descritas por uma determinada superfície do universo.

Portanto, a constante de acoplamento é uma variável dinâmica da teoria das cordas, diferentemente da teoria quântica de campos em que ela é uma constante. Enquanto não houver quebra na supersimetria, tais campos escalares podem tomar valores arbitrários (eles são módulos). No entanto, a quebra de supersimetria geralmente cria uma energia potencial para os campos escalares e os campos escalares se localizam próximos a um mínimo cuja posição deveria ser em princípio calculável na teoria das cordas.

A dilatação atua como um escalar de Brans–Dicke, em que a escala de Planck efetiva depende de ambas a escala da corda e do campo de dilatons.

Na supersimetria, o superparceiro do dilaton é denominado dilatino, e o dilaton se combina com um áxion para formar um campo escalar complexo.


Previous Page Next Page






Dilató Catalan Dilaton English Dilatón Spanish دیلاتون FA Dilaton French Dilatone Italian ディラトン Japanese 딜라톤 Korean Dylaton Polish Дилатон Russian

Responsive image

Responsive image