Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Kepler-Gleichung

Kepler-Gleichung (elliptische Bahn):
in Abhängigkeit von (Parameter: Exzentrizität )
Zur Kepler-Gleichung (elliptische Bahn):
Längen: Punkte:
große Halbachse Mittelpunkt
kleine Halbachse Brennpunkt (Sonne)
lineare Exzentrizität Periapsis
Winkel:
wahre Anomalie Objekt (Planet)
exzentrische
      Anomalie
Hilfspunkt zum
      Objekt
mittlere Anomalie fiktives Objekt

Die Kepler-Gleichung ist eine transzendente Gleichung zur Berechnung der Bewegung von Himmelskörpern auf elliptischen Bahnen um einen zentralen Himmelskörper, wie z. B. die Erde um die Sonne. Sie ergibt sich aus den ersten beiden Gesetzen, die Johannes Kepler 1609 publizierte, und lautet

.

ist die sogenannte „exzentrische Anomalie“ des Himmelskörpers und die „mittlere Anomalie“, eines fiktiven Himmelskörpers , der die Zeit repräsentiert. Gleichungs-Parameter ist die (numerische) Exzentrizität[A 1] der Bahn-Ellipse.

Beide Anomalien sind auf die Periapsis bezogene Winkel um das Zentrum der Ellipse.

Die Kepler-Gleichung wird z. B. bei der Berechnung der Zeitgleichung angewendet. Die dabei benötigte „wahre Anomalie des Himmelskörpers (dort die Erde) auf seiner Bahn um den zentralen Himmelskörper (dort definitiv die Sonne) wird aus der „exzentrischen Anomalie“ errechnet.
Referenzfehler: <ref>-Tags existieren für die Gruppe A, jedoch wurde kein dazugehöriges <references group="A" />-Tag gefunden.


Previous Page Next Page