Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


NP-hard

Diagrama de Euler de las familias de problemas P, NP, NP-completo, y NP-hard.

En teoría de la complejidad computacional, la clase de complejidad NP-hard (o NP-complejo, o NP-difícil) es el conjunto de los problemas de decisión que contiene los problemas H tales que todo problema L en NP puede ser transformado polinomialmente en H. Esta clase puede ser descrita como aquella que contiene a los problemas de decisión que son como mínimo tan difíciles como un problema de NP. Esta afirmación se justifica porque si podemos encontrar un algoritmo A que resuelve uno de los problemas H de NP-hard en tiempo polinómico, entonces es posible construir un algoritmo que trabaje en tiempo polinómico para cualquier problema de NP ejecutando primero la reducción de este problema en H y luego ejecutando el algoritmo A.

Asumiendo que el lenguaje L es NP-completo,

1. L está en NP
2. ∀L' en NP, L' ≤ L

En el conjunto NP-Hard se asume que el lenguaje L satisface la propiedad 2, pero no la propiedad 1.

La clase NP-completo puede definirse alternativamente como la intersección entre NP y NP-hard.

Algunas consecuencias de la definición son:

  • Como NP-completo es el tipo más costoso de la clase NP, el problema H es al menos tan costoso como NP, pero H no tiene por qué estar en NP y por tanto no tiene por qué ser un problema de decisión.
  • Los problemas NP-completos se pueden transformar unos en otros por una reducción polinómica, los problemas NP-completos pueden ser resueltos en tiempo polinómico por reducción a H, así que todos los problemas de NP se reducen a H; sin embargo, esto implica utilizar dos tipos diferentes de transformaciones: de problemas de decisión NP-completos a un problema NP-completo L por transformaciones polinómicas, y de L a H por reducción polinómica de Turing.
  • Si hay algún algoritmo polinómico para resolver un problema NP-hard, entonces hay algoritmos para resolver todos los problemas de NP en tiempo polinómico, esto significaría que P=NP.
  • Si un problema de optimización H tiene una versión NP-completa, entonces H es NP-hard.
  • Si H pertenece a NP, entonces H pertenece también a NP-completo porque en este caso existe una transformación polinómica de Turing que cumple los requisitos de las transformaciones polinómicas.

Un error común es pensar que NP en NP-hard quiere decir no polinómico, ya que aunque hay serias sospechas sobre que no existen algoritmos para resolver estos problemas en tiempo polinómico, esto nunca ha sido demostrado.


Previous Page Next Page






مسائل NP صعبة Arabic NP-difícil Catalan NP-Schwere German NP-hardness English NP-peza EO ان‌پی سخت FA NP-difficile French NP-קשיות HE NP-difficile Italian NP困難 Japanese

Responsive image

Responsive image