En teoría de la complejidad computacional, la clase de complejidad NP-hard (o NP-complejo, o NP-difícil) es el conjunto de los problemas de decisión que contiene los problemas H tales que todo problema L en NP puede ser transformado polinomialmente en H. Esta clase puede ser descrita como aquella que contiene a los problemas de decisión que son como mínimo tan difíciles como un problema de NP. Esta afirmación se justifica porque si podemos encontrar un algoritmo A que resuelve uno de los problemas H de NP-hard en tiempo polinómico, entonces es posible construir un algoritmo que trabaje en tiempo polinómico para cualquier problema de NP ejecutando primero la reducción de este problema en H y luego ejecutando el algoritmo A.
Asumiendo que el lenguaje L es NP-completo,
En el conjunto NP-Hard se asume que el lenguaje L satisface la propiedad 2, pero no la propiedad 1.
La clase NP-completo puede definirse alternativamente como la intersección entre NP y NP-hard.
Algunas consecuencias de la definición son:
Un error común es pensar que NP en NP-hard quiere decir no polinómico, ya que aunque hay serias sospechas sobre que no existen algoritmos para resolver estos problemas en tiempo polinómico, esto nunca ha sido demostrado.