Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Oktonion

V matematice se pojmem oktoniony označuje rozšíření kvaternionů. Tvoří osmidimenzionální algebru nad reálnými čísly a je neasociativní. Je to nejstarší známý příklad neasociativního okruhu.

Oktoniony tvoří poslední, a tudíž nejobecnější typ tzv. normovaných algeber s dělením (též nazývané Hurwitzovy algebry). Je překvapivé, že existují právě jen čtyři takové algebry: reálná čísla, komplexní čísla, kvaterniony a oktoniony. Principiální rozdíl mezi vektorovými prostory a Hurwitzovými algebrami spočívá právě v operaci dělení: zatímco u vektorů operaci dělení dvou vektorů vůbec nezavádíme (neexistuje), u normovaných algeber s dělením (vzájemně jednoznačná a invertibilní) operace dělení existuje. Hurwitzovy algebry však existují jen ve čtyřech výlučných dimenzích: 1, 2, 4, 8. Dimenze 8 má tedy určité unikátní vlastnosti, dané unikátními vlastnostmi oktonionů. Zatímco reálná čísla, komplexní čísla a kvaterniony mají těsný vztah k regulárním Lieovým grupám typu A, B, C, D, oktoniony mají těsný vztah k tzv. výlučným Lieovým grupám typu G2, F4, E6, E7, E8. Řada teoretických fyziků proto oprávněně usuzuje též na hlubokou roli oktonionů ve fyzice, zejména částicové.[1]

Zřejmě kvůli neasociativnosti, která je zdánlivě „nefyzikální“, jsou oktoniony dosud méně známé i používané než kvaterniony.

Mírou narušení komutativního a asociativního zákona jsou u oktonionů veličiny zvané komutátor a asociátor.

  1. J. Baez: The Octonions. Bull. Amer. Math. Soc. 39 (2002), 145-205. Errata in Bull Amer. Math. Soc. 42 (2005), 213. On-line: http://math.ucr.edu/home/baez/octonions/

Previous Page Next Page






عدد ثماني مركب Arabic Octonió Catalan Кэли алгебри CV Oktave (Mathematik) German Οκτόνιο Greek Octonion English Octonión Spanish Oktonioi EU هشتگان‌ها FA Octonion French

Responsive image

Responsive image