Relacións binarias transitivas | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Si indica que a columna da propiedade é sempre verdadeira no termo da fila (na esquerda de todo), mentres que Non indica que a propiedade non está garantida en xeral (pode cumprirse ou non). Por exemplo, toda relación de equivalencia é simétrica, mais non necesariamente antisimétrica, está indicada por Si na columna "Simétrica" e Non na columna "Antisimétrica". Todas as definicións requiren tacitamente que a relación homoxénea sexa transitiva: para todo se e entón |
En matemáticas, especialmente na teoría da orde, unha preorde ou cuasiorde é unha relación binaria que é reflexiva e transitiva. O nome de preorde pretende suxerir que son ordes case parciais, mais non de todo, xa que non son necesariamente antisimétricas.
Un exemplo natural de preorde é a relación de división "x divide y" entre números enteiros, polinomios ou elementos dun anel conmutativo. Por exemplo, a relación de división é reflexiva pois cada número enteiro divídese a si mesmo. Mais a relación de división non é antisimétrica, porque divide e divide . É a esta preorde á que "máximo" e "mínimo" se refiren nas frases "máximo común divisor" e "mínimo común múltiplo" (agás que, para os enteiros, o máximo común divisor tamén é o máximo para a orde natural dos enteiros).
As preordes están estreitamente relacionadas coas relacións de equivalencia e as ordes parciais (non estritas). Ambas as dúas son casos especiais dunha preorde: unha preorde antisimétrica é unha orde parcial e unha simétrica unha relación de equivalencia. A maiores, unha preorde nun conxunto pódese definir equivalentemente como unha relación de equivalencia sobre , xunto cunha orde parcial sobre o conxunto da clase de equivalencia. Do mesmo xeito que as ordes parciais e as relacións de equivalencia, as preordes (nun conxunto non baleiro) nunca son asimétricas.
Como relación binaria, unha preorde pódese denotar como ou . En palabras, cando pódese dicir que b cobre a ou que a precede a b, ou que b redúcese en a. En ocasións, tamén se usa a notación ← ou →.