Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Supremumseigenschaft

In der Mathematik ist die Supremumseigenschaft eine fundamentale Eigenschaft der reellen Zahlen, genauer ihrer Anordnung, und bestimmter anderer geordneter Mengen. Die Eigenschaft besagt, dass jede nichtleere und nach oben beschränkte Menge reeller Zahlen eine kleinste obere Schranke, ein Supremum, besitzt.

Die Supremumseigenschaft ist eine Form des Vollständigkeitsaxioms für die reellen Zahlen und wird manchmal als Dedekind-Vollständigkeit bezeichnet. Sie kann verwendet werden, um viele grundlegende Resultate der reellen Analysis zu zeigen, etwa den Zwischenwertsatz, den Satz von Bolzano-Weierstraß, den Extremwertsatz oder den Satz von Heine-Borel. Für die synthetische Konstruktion der reellen Zahlen wird sie üblicherweise als Axiom vorausgesetzt. Mit der Konstruktion der reellen Zahlen mittels des Dedekindschen Schnittes ist sie ebenso eng verbunden.

In der Ordnungstheorie kann die Supremumseigenschaft zu einem Vollständigkeitsbegriff für jede partiell geordnete Menge verallgemeinert werden. Eine dichte, total geordnete Menge, welche die Supremumseigenschaft erfüllt, nennt man lineares Kontinuum.


Previous Page Next Page






Least-upper-bound property English Propiedad del límite superior mínimo Spanish Propriété de la borne supérieure French 최소 상계 성질 Korean 最小上界性 Chinese

Responsive image

Responsive image