In der Mathematik ist die Supremumseigenschaft eine fundamentale Eigenschaft der reellen Zahlen, genauer ihrer Anordnung, und bestimmter anderer geordneter Mengen. Die Eigenschaft besagt, dass jede nichtleere und nach oben beschränkte Menge reeller Zahlen eine kleinste obere Schranke, ein Supremum, besitzt.
Die Supremumseigenschaft ist eine Form des Vollständigkeitsaxioms für die reellen Zahlen und wird manchmal als Dedekind-Vollständigkeit bezeichnet. Sie kann verwendet werden, um viele grundlegende Resultate der reellen Analysis zu zeigen, etwa den Zwischenwertsatz, den Satz von Bolzano-Weierstraß, den Extremwertsatz oder den Satz von Heine-Borel. Für die synthetische Konstruktion der reellen Zahlen wird sie üblicherweise als Axiom vorausgesetzt. Mit der Konstruktion der reellen Zahlen mittels des Dedekindschen Schnittes ist sie ebenso eng verbunden.
In der Ordnungstheorie kann die Supremumseigenschaft zu einem Vollständigkeitsbegriff für jede partiell geordnete Menge verallgemeinert werden. Eine dichte, total geordnete Menge, welche die Supremumseigenschaft erfüllt, nennt man lineares Kontinuum.