Suunnistuvuus eli orientoituvuus on matematiikassa useiden topologisten avaruuksien kuten reaalisten vektoriavaruuksien, euklidisten avaruuksien, pintojen ja muiden monistojen ominaisuus, joka tekee mahdollisesti määritellä tällaisessa avaruudessa ristiriidattomasti kiertosuunnat myötäpäivään ja vastapäivään.[1] Topologinen avaruus on suunnistuva eli orientoituva, jos tällainen määritelmä voidaan asettaa. Siinä tapauksessa on itse asiassa kaksikin vaihtoehtoista tapaa määritellä nämä kiertosuunnat, ja valinta niiden välillä on avaruuden suunnistus eli orientaatio. Reaaliset vektoriavaruudet, euklidiset avaruudet ja pallot ovat suunnistuvia. Avaruus on suunnistumaton (orientoitumaton), jos siinä jokainen geometrinen muoto voidaan muuntaa peilikuvakseen siirtämällä se jotakin sopivasti valittua silmukkaa pitkin täyden kierroksen verran; esimerkiksi kuvio muuntuu tällöin kuvioksi . Esimerkiksi Möbiuksen nauha on suunnistumaton pinta.
Suunnistuvuuden määritelmälle voidaan esittää useita yhtäpitäviä muotoilua sovelluksesta ja yleisyystasosta riippuen. Yleisiin topologisiin avaruuksiin sovellettavat määritelmät muotoillaan usein homologiateorian käsittein, kun taas differentioituvien monistojen rakenne tekee mahdolliseksi määritellä käsite differentiaalisten muotojen avulla. Muuan avaruuden suunnistuvuuden käsitteen yleistys on avaruusperheen suunnistuvuus, joka parametroidaan toisen avaruuden (säiekimpun) avulla, jolloin orientaatio on valittava jokaiselle avaruudelle, joka muuntuu jatkuvasti parametriarvojen muutosten suhteen.