Tiheysfunktionaaliteoria

Tiheysfunktionaaliteoria (density functional theory, DFT) on laskennallisessa fysiikassa ja kemiassa käytetty kvanttimekaaninen menetelmä mikroskooppisten systeemien elektronirakenteen tutkimiseen. Menetelmää käytetään erityisesti kiinteän olomuodon fysiikassa sekä kvanttikemiassa. Perustan teorialle loivat Pierre Hohenberg ja Walter Kohn [1] vuonna 1964 osoittaessaan, että elektronisysteemin perustilan elektronitiheys määrittää systeemin tilan yksiselitteisesti. Tällöin systeemin sisäenergia on mahdollista kirjoittaa aaltofunktion sijasta elektronitiheysfunktion funktionaalina, jolloin laskennalliset kustannukset kutistuvat merkittävästi. Kiinteän olomuodon fysiikassa tiheysfunktionaaliteoria on aina ollut suositumpi kuin aaltofunktiopohjaiset menetelmät ja kiinteän olomuodon tutkimisessa tiheysfunktionaaliteoriaa on käytetty jo 1970-luvulta asti. Kvanttikemistien suosioon menetelmä kuitenkin nousi vasta 1980-luvun lopulla uusien, kehittyneempien funktionaalien myötä. Vuonna 1998 kemian Nobelin palkinto myönnettiin Kohnille teorian keksimisestä ja John Poplelle laskennallisten menetelmien kehittämisestä. [2]

Tiheysfunktionaaliteoria on teoriassa eksakti, mutta käytännössä kokonaisenergialausekkeessa esiintyvän vaihto- ja korrelaatiofunktionaalin oikeaa muotoa ei tunneta, joten funktionaalia joudutaan approksimoimaan. Tämän seurauksena myös tulokset ovat riippuvaisia käytetystä approksimaatiosta. Approksimaatiosta seuraavia puutteita tiheysfunktionaaliteoriassa ovat muun muassa:

  • Yksikään approksimatiivinen funktionaali ei sisällä heikkoa dispersiovuorovaikutusta, mikä on ongelma esimerkiksi hiilivetyjä mallinnettaessa. Dispersiota voidaan approksimoida esimerkiksi empiirisillä korjauksilla.[2][3][4] Dispersion arvioimista suoraan elektronitiheydestä käsin on myös esitetty [5].
  • Perinteinen tiheysfunktionaaliteoria ei sisällä virittyneitä tiloja, koska virittyneen tilan elektronitiheys ei yksiselitteisesti määrää potentiaalia. Virittyneitä tiloja on kuitenkin mahdollista käsitellä ajasta riippuvan tiheysfunktionaaliteorian (time-dependent density functional theory, TD-DFT) avulla.[2]
  • Tiheysfunktionaaliteoria on tunnetusti surkea HOMO–LUMO-välin eli ylimmän miehitetyn ja alimman miehittämättömän orbitaalin energiaeron arvioimisessa.
  1. P. Hohenberg, W. Kohn: Inhomogeneous electron gas. Physical review, 1964.
  2. a b c K. Burke: Perspective on density functional theory. Journal of Chemical Physics, 2012.
  3. S. Grimme: Density functional theory with London dispersion corrections. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2011.
  4. S. Grimme et al.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 2010.
  5. Y. Andersson, D. C. Langreth, B. I. Lundqvist: van der Waals Interactions in Density-Functional Theory. Physical review letters, 1996.

Tiheysfunktionaaliteoria

Dodaje.pl - Ogłoszenia lokalne