Mewn mathemateg unfathiant (Saesneg: identity) yw perthynas yr hafaledd A = B, fel bod A a B yn cynnwys rhai newidynnau a lle mae A a B yn rhoi'r un gwerthoedd a'i gilydd, ni waeth be fo'r gwerthoedd (rhifau, fel arfer) a gaiff eu cyfnewid am newidynnau. Mewn geiriau eraill, mae A = B yn unfathiant os yw A a B yn diffinio yr un ffwythiannau. Golyga hyn fod yr 'unfathiant' yn 'hafaledd' (equality) rhwng ffwythiannau a ddiffiniwyd yn wahanol. Er enghraifft, mae (a + b)2 = a2 + 2ab + b2 a cos2(x) + sin2(x) = 1 yn unfathiannau.
Caiff unfathiannau eu dynodi gan y symbol ≡ (bariau triphlyg ), yn hytrach na =, sef yr hafaliad.[1]