Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Virialsatz

Der Virialsatz (lateinisch vis ‚Kraft‘) ist eine Beziehung zwischen den zeitlichen arithmetischen Mittelwerten der kinetischen Energie  und der potentiellen Energie  eines abgeschlossenen physikalischen Systems. Der Virialsatz wurde 1870 von Rudolf Clausius aufgestellt in dem Aufsatz Über einen auf die Wärme anwendbaren mechanischen Satz.

Das Virial ist dabei nach Clausius der Ausdruck[1][2][3]

Hierbei bezeichnet

  • die auf das -te Teilchen wirkende Kraft
  • den Ortsvektor des -ten Teilchens
  • der Querstrich einen unten näher erläuterten Mittelwert, z. B. ein Zeit- oder Scharmittel.

Der Virialsatz wurde von Clausius ursprünglich als Satz der klassischen Mechanik formuliert (als Gleichheit von Virial und mittlerer kinetischer Energie). Er ermöglicht allgemeine Abschätzungen der Anteile potentieller und kinetischer Energie auch in komplexen Systemen, z. B. in Mehrkörperproblemen der Astrophysik. Es gibt auch einen quantenmechanischen Virialsatz, einen Virialsatz der statistischen Mechanik, aus dem u. a. das ideale Gasgesetz und Korrekturen für reale Gase abgeleitet wurden, sowie einen relativistischen Virialsatz.

Der Virialsatz gilt nur unter gewissen Voraussetzungen, etwa im Fall des Virialsatzes der Mechanik, dass mit zeitlicher Mittelwertbildung Orte und Geschwindigkeiten der Teilchen beschränkt sind, oder dass ein thermisches Gleichgewicht herrscht.

  1. R. Clausius: Über einen auf die Wärme anwendbaren mechanischen Satz. Annalen der Physik, Band 217, 1870, S. 124–130.
  2. H. Goldstein: Klassische Mechanik. Akademische Verlagsgesellschaft, 1978, S. 76 f.
  3. Die Definitionen des Virials variieren etwas, z. B. lassen sowohl Wolfgang Pauli in seinen Vorlesungen über Thermodynamik (ETH Zürich 1958) als auch das unten zitierte Buch von Honerkamp den Vorfaktor −1/2 in der Definition des Virials weg und Pauli lässt auch die Mittelbildung weg.

Previous Page Next Page