Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Portal:Electronics

The Electronics Portal

Modern surface-mount electronic components on a printed circuit board, with a large integrated circuit at the top

Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other electrically charged particles. It is a subfield of physics and electrical engineering which uses active devices such as transistors, diodes, and integrated circuits to control and amplify the flow of electric current and to convert it from one form to another, such as from alternating current (AC) to direct current (DC) or from analog signals to digital signals.

Electronic devices have hugely influenced the development of many aspects of modern society, such as telecommunications, entertainment, education, health care, industry, and security. The main driving force behind the advancement of electronics is the semiconductor industry, which in response to global demand continually produces ever-more sophisticated electronic devices and circuits. The semiconductor industry is one of the largest and most profitable sectors in the global economy, with annual revenues exceeding $481 billion in 2018. The electronics industry also encompasses other sectors that rely on electronic devices and systems, such as e-commerce, which generated over $29 trillion in online sales in 2017. (Full article...)

These are Good articles, which meet a core set of high editorial standards.

Selected image

Selected biography

Shannon c. 1950s

Claude Elwood Shannon (April 30, 1916 – February 24, 2001) was an American mathematician, electrical engineer, computer scientist, cryptographer and inventor known as the "father of information theory" and as the "father of the Information Age". Shannon was the first to describe the Boolean gates (electronic circuits) that are essential to all digital electronic circuits, and was one of the founding fathers of artificial intelligence. Shannon is credited with laying the foundations of the Information Age.

At the University of Michigan, Shannon dual degreed, graduating with a Bachelor of Science in both electrical engineering and mathematics in 1936. A 21-year-old master's degree student at the Massachusetts Institute of Technology (MIT) in electrical engineering, his thesis concerned switching circuit theory, demonstrating that electrical applications of Boolean algebra could construct any logical numerical relationship, thereby establishing the theory behind digital computing and digital circuits. The thesis has been claimed to be the most important master's thesis of all time, having also been called the "birth certificate of the digital revolution", and winning the 1939 Alfred Noble Prize. He then graduated with a PhD in mathematics from MIT in 1940, with his thesis focused on genetics, with it deriving important results, but it went unpublished. (Full article...)

Selected article

photograph
Printed circuit planar transmission lines used to create filters in a 20 GHz spectrum analyser. The structure on the left is called a hairpin filter and is an example of a band-pass filter. The structure on the right is a stub filter and is a low-pass filter. The perforated regions above and below are not transmission lines, but electromagnetic shielding for the circuit.

Planar transmission lines are transmission lines with conductors, or in some cases dielectric (insulating) strips, that are flat, ribbon-shaped lines. They are used to interconnect components on printed circuits and integrated circuits working at microwave frequencies because the planar type fits in well with the manufacturing methods for these components. Transmission lines are more than simply interconnections. With simple interconnections, the propagation of the electromagnetic wave along the wire is fast enough to be considered instantaneous, and the voltages at each end of the wire can be considered identical. If the wire is longer than a large fraction of a wavelength (one tenth is often used as a rule of thumb), these assumptions are no longer true and transmission line theory must be used instead. With transmission lines, the geometry of the line is precisely controlled (in most cases, the cross-section is kept constant along the length) so that its electrical behaviour is highly predictable. At lower frequencies, these considerations are only necessary for the cables connecting different pieces of equipment, but at microwave frequencies the distance at which transmission line theory becomes necessary is measured in millimetres. Hence, transmission lines are needed within circuits.

The earliest type of planar transmission line was conceived during World War II by Robert M. Barrett. It is known as stripline, and is one of the four main types in modern use, along with microstrip, suspended stripline, and coplanar waveguide. All four of these types consist of a pair of conductors (although in three of them, one of these conductors is the ground plane). Consequently, they have a dominant mode of transmission (the mode is the field pattern of the electromagnetic wave) that is identical, or near-identical, to the mode found in a pair of wires. Other planar types of transmission line, such as slotline, finline, and imageline, transmit along a strip of dielectric, and substrate-integrated waveguide forms a dielectric waveguide within the substrate with rows of posts. These types cannot support the same mode as a pair of wires, and consequently they have different transmission properties. Many of these types have a narrower bandwidth and in general produce more signal distortion than pairs of conductors. Their advantages depend on the exact types being compared, but can include low loss and a better range of characteristic impedance. (Full article...)

Did you know (auto-generated) - load new batch

Consumer showcase

Dell Computer's Inspiron laptop brand is a range of computers targeted at the consumer market. Current models in the range include the E1501/1501, E1405/640m, E1505/6400 and, E1705/9400. Some Inspiron machines offered in the past have been modified to become a higher or lower quality machine. An example of this is the first-generation Inspiron XPS and Inspiron 9100 (2004). Both machines shared the same options, Dell marked the XPS as an "ultimate gaming machine", while marking the 9100 as a "desktop replacement".

Selected design


Credit: commons:User:FDominec
This list of electronic components is intended to make drawing of schematics simple, fast and very flexible.

WikiProjects

Main topics


Subcategories

Category puzzle
Category puzzle
Select [►] to view subcategories

Associated Wikimedia

The following Wikimedia Foundation sister projects provide more on this subject:

Discover Wikipedia using portals


Previous Page Next Page