Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Magnetic levitation

An experiment with off-the-shelf components uses a magnet glued to the end of a rotary multitool. Its rotation causes a second magnet to levitate millimeters away from the first one.[1]
Magnetic levitation can be stabilised using different techniques; here rotation (spin) is used

Magnetic levitation (maglev) or magnetic suspension is a method by which an object is suspended with no support other than magnetic fields. Magnetic force is used to counteract the effects of the gravitational force and any other forces.[2]

The two primary issues involved in magnetic levitation are lifting forces: providing an upward force sufficient to counteract gravity, and stability: ensuring that the system does not spontaneously slide or flip into a configuration where the lift is neutralized.

Magnetic levitation is used for maglev trains, contactless melting, magnetic bearings, and for product display purposes.

  1. ^ Hermansen, Joachim Marco; Laust Durhuus, Frederik; Frandsen, Cathrine; Beleggia, Marco; R.H. Bahl, Christian; Bjørk, Rasmus (13 October 2023). "Magnetic levitation by rotation". Physical Review Applied. 20 (4): 044036–044051. arXiv:2305.00812. Bibcode:2023PhRvP..20d4036H. doi:10.1103/PhysRevApplied.20.044036. S2CID 258426320. Retrieved 23 October 2023.
  2. ^ Rote, Donald M. (2004). "Magnetic Levitation". Encyclopedia of Energy: 691–703. doi:10.1016/B0-12-176480-X/00182-0. ISBN 978-0-12-176480-7.

Previous Page Next Page