Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


User:PAR

A barnstar for your extensive contributions to articles related to statistical mechanics! --HappyCamper
This user knows that his user page is a mess, and likes it that way.

Subjects I'm working on

<br style="clear:both;" />

Help:Displaying a formula

  • References {{note_label|Wood1992||}} {{ref_harvard|Wood1992|Wood, 1992|}}
  • References <ref name="???">reference</ref>,<ref name="???"/>,<references/>,{{rp|p.103}}
  • References (Harvard with pages)
<ref name="Rybicki 1979 22">{{harvnb|Rybicki|Lightman|1979|p=22}}</ref>
==References==
{{Reflist|# of columns}} 
=== Bibliography ===
{{ref begin}}
*{{Cite book|etc |ref=harv}}
{{ref end}}


  1. History of Wayne, NY
  2. Australian Trilobite Jump table
  3. RGB
  4. -
  5. Pigment-loss color blindness
  6. Peach
  7. Work7
  8. Work8
  9. Extension to Kummer's test
  10. Work10
  11. Elastic Moduli
  12. Work 12



  1. ^ Herrmann, F.; Würfel, P. (2005). "Light with nonzero chemical potential". Am. J. Phys. 78 (3). American Association of Physics Teachers: 717–721. doi:10.1119/1.1904623. Retrieved 2012-12-20. A necessary condition for Planck's law to hold is that the photon number is not conserved, implying that the chemical potential of the photons is zero. While this may be unavoidably true on very long timescales, there are many practical cases that are dealt with by assuming a nonzero chemical potential, which yields an equilibrium distribution which is not Planckian.

Previous Page Next Page








Responsive image

Responsive image