En geometria diferencial, la geometria riemanniana és l'estudi de les varietats diferencials amb mètrica de Riemann, és a dir, d'una aplicació que a cada punt de la varietat li assigna una forma quadràtica definida positiva al seu espai tangent, una aplicació que varia lleugerament d'un punt a un altre. Això dona lloc a idees locals de (entre altres magnituds) angle, longitud de corba i de volum. A partir d'aquestes magnituds, es poden obtenir altres magnituds per integració de les magnituds locals.
Això va ser proposat de forma general per primera vegada per Bernhard Riemann durant el segle xix. Com a casos especials particulars apareixen els dos tipus convencionals (geometria el·líptica i geometria hiperbòlica) de geometria no euclidiana i també la geometria euclidiana. Totes aquestes geometries són tractades sobre la mateixa base, de la mateixa manera que una àmplia gamma de geometries amb propietats mètriques que varien de punt a punt.
Qualsevol varietat diferenciable admet una mètrica de Riemann i aquesta estructura addicional sovint ajuda a solucionar problemes de topologia diferencial. També serveix com a nivell d'entrada per a l'estructura més complicada de les varietats pseudoriemannianes, les quals (en el cas particular de tenir dimensió 4) són objectes principals de la teoria de la relativitat.