Odhadem se v matematické statistice nazývá určení parametru rozdělení hodnoty určitého znaku v populaci (základním souboru) na základě hodnot zjištěných u určitého vzorku (výběrového souboru). Odhady se dělí na bodové a intervalové. V angličtině se rozlišuje metoda nebo funkce odhadu (anglicky estimator) dané veličiny (anglicky estimand) od jejího výsledku (anglicky estimate).[1] Například výběrová střední hodnota je často používaný odhad střední hodnoty základního souboru.
Bodový odhad je jedna hodnota, která udává „nejlepší“ (nepravděpodobnější) hodnotu daného parametru. („Jedna hodnota“ nutně nemusí znamenat „jedno číslo“, ale může se jednat o vektor nebo funkci.)
Intervalový odhad je interval, do něhož hodnota parametru spočítaná na základě výběru padne s určitou předem stanovenou pravděpodobností (obvykle 95 nebo 99 %).
Výhodou bodového odhadu je, že poskytuje jedinou hodnotu, se kterou je možné dál počítat. Jeho nevýhodou je, že nevíme, jaká je pravděpodobnost toho, že se skutečný výsledek od bodového odhadu bude odchylovat. Intervalový odhad, který se používá pro testování statistických hypotéz, tuto nevýhodu nemá. V praxi se intervalový odhad často zapisuje ve tvaru příp. , kde s je aritmetický (příp. geometrický) průměr dolní a horní meze intervalu.
Pokud například házíme poctivou mincí, je číslo 5 nejlepším bodovým odhadem, kolik padne hlav z deseti hodů. Ale pravděpodobnost toho, že hlava padne přesně v polovině případů, je u deseti hodů jen přibližně čtvrtinová. Proto by nás malá odchylka od rozdělení počtu hlav a orlů přesně na polovinu neměla vést k tomu, že minci prohlásíme za nepoctivou. Na druhou stranu, pravděpodobnost toho, že z 10 hodů mincí padne 10x nebo 9x táž strana, je přibližně 2 %; proto při takovém výsledku hypotézu, že je mince poctivá, zpravidla zamítneme (pokud jsme předem stanovili hladinu testu 5 %; pokud by předem stanovená hladina byla 1 %, připustili bychom i padnutí 9 hlav nebo orlů).
Teorie odhadu se zabývá vlastnostmi odhadů; to jest definičními vlastnostmi, které lze používat pro porovnávání různých odhadů (různých pravidel pro vytváření odhadů) stejné veličiny ze stejných dat. Takové vlastnosti lze použít pro určení nejlepšího pravidla pro dané okolnosti. V robustní statistice však statistická teorie pokračuje v uvažování rovnováhy mezi dobrými vlastnostmi, za dodržení striktně definovaných předpokladů, a méně dobrými vlastnosti, které platí při volnějších podmínkách.