Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Rhif cymhlyg

Gellir cynrychioli rhif cymhlyg, yn weledol, fel pâr o rifau (a, b) sy'n ffurfio fector ar ddiagram o'r enw 'diagram Argand', sy'n cynrychioli'r 'plân gymhlyg'. "Re" yw'r echelin real, "Im" yw'r echelin dychmygol, ac mae i yn bodloni i2 = −1.

Rhif cymhlyg yw'r rhif y gellir ei fynegi fel a + bi, lle mae a a b yn rhifau real, ac mae i yn ateb i'r hafaliad x2 = −1. Gan nad oes unrhyw rif real yn bodloni'r hafaliad hwn, gelwir i yn "rhif dychmygol". Ar gyfer y rhif cymhlyg a + bi, gelwir a yn "rhan real", a gelwir b yn "rhan ddychmygol". Er gwaethaf yr ystyr arferol i'r gair "dychmygol", ystyrir rhifau cymhlyg yn y gwyddorau mathemategol yn "gwbwl real", fel rhifau real, ac maent yn sylfaenol mewn sawl agwedd o'r disgrifiad gwyddonol o'r byd naturiol.[1][2]

Gellir diffinio'r system rhif cymhlyg fel estyniad algebraidd o'r rhifau real cyffredin trwy rif dychmygol i.[3] Mae hyn yn golygu y gellir ychwanegu, tynnu a lluosi rhifau cymhlyg, fel polynomialau yn y newidyn i, gyda'r rheol i2 = −1 wedi'i osod. At hynny, gellir rhannu rhifau cymhlyg hefyd gyda rhifau cymhlyg di-sero. Ar y cyfan, mae'r system rhif cymhlyg yn faes o fewn mathemateg.

Mae rhifau cymhlyg yn arwain at theorem sylfaenol algebra: mae gan bob hafaliad polynomial nad yw'n gyson â chyfernodau (neu 'gyd-berthynas'; coefficients) ateb cymhleth. Mae'r nodwedd hon yn wir am y rhifau cymhlyg, ond nid y rhifau real. Credir bod y mathemategydd Eidalaidd o'r 16g, Gerolamo Cardano, wedi cyflwyno rhifau cymhlyg yn ei ymdrechion i ddod o hyd i atebion i hafaliadau ciwbig.[4]

Mewn geometreg, mae rhifau cymhlyg yn ymestyn y cysyniad o'r linell-rif un dimensiwn i'r plân gymhlyg dau ddimensiwn, trwy ddefnyddio'r echel lorweddol ar gyfer y rhan real a'r echelin fertigol ar gyfer y rhan ddychmygol. Gellir adnabod y rhif cymhlyg a + bi gyda'r pwynt (a, b) yn y plân gymhlyg.

Gellir dweud fod rhif cymhlyg y mae ei ran real yn sero yn rhif dychmygol llwyr; mae'r pwyntiau ar gyfer y rhifau hyn yn gorwedd ar echelin fertigol y plân gymhlyg. Mae rhif cymhlyg y mae ei ran ddychmygol yn sero yn gallu cael ei ystyried yn rhif go iawn; mae ei bwynt yn gorwedd ar echel lorweddol y plân gymhlyg. Gellir hefyd gynrychioli rhifau cymhlyg mewn ffurf pegynnol, sy'n cysylltu pob rhif cymhlyg gyda'i bellter o'r tarddiad (ei faint) a chydag ongl benodol a elwir yn "argiau (neu 'ymresymiad') y rhif cymhlyg" hwn.

Fel hyn, diffinnir rhif cymhlyg fel polynomial gyda chyfernodau go-iawn yn yr un amhenodol i, lle mae ei berthynas i2 + 1 = 0 ar ei gyfer. Yn seiliedig ar y diffiniad hwn, gellir adio a lluosi rhifau cymhlyg, gan ddefnyddio'r adio a'r lluosi ar gyfer polynomialiaid. Mae'r berthynas i2 + 1 = 0 yn cymell y cydraddoldebau i i4k = 1, i4k+1 = i, i4k+2 = −1, aci4k+3 = −i, sy'n dal yr holl gyfanrifau k; mae'r rhain yn caniatáu lleihau unrhyw polynomial sy'n deillio o adio a lluosi rhifau cymhlyg i bolynomial llinol yn i, ac eto o'r ffurf a + bi gyda chyfernodau go-iawn a, b.

  1. Gweler: Nicolas Bourbaki, "1. Foundations of mathematics; logic; set theory", Elements of the history of mathematics, Springer, pp. 18–24.
  2. Penrose, Roger (2016). The Road to Reality: A Complete Guide to the Laws of the Universe (arg. reprinted). Random House. tt. 72–73. ISBN 978-1-4464-1820-8. tud. 73: "complex numbers, as much as reals, and perhaps even more, find a unity with nature that is truly remarkable. It is as though Nature herself is as impressed by the scope and consistency of the complex-number system as we are ourselves, and has entrusted to these numbers the precise operations of her world at its minutest scales."
  3. Nicolas Bourbaki (1988). "VIII.1". General topology. Springer-Verlag.
  4. Burton (1995, p. 294)

Previous Page Next Page