Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Fermatprimtal

Et Fermatprimtal (opkaldt efter Pierre de Fermat) er et primtal af formen . Fermat bemærkede at var et primtal for m lig med 0, 1, 2, 3 og 4. Han påstod derfor at det samme gjaldt for alle værdier af m. Men i 1732 viste Euler at det ikke er tilfældet: Med m=5 får vi at 232+1 er deleligt med 641. Med m=6 får vi 264+1; at dette tal er sammensat, eftervistes i 1854 af den danske matematiker Thomas Clausen der fandt at dets mindste primfaktor er 274 177.

Til dato er der ikke fundet flere værdier af m der gør til et primtal, og det forekommer usandsynligt at der skulle eksistere nogen. I skrivende stund kendes der 277 specifikke værdier af m for hvilke det vides med sikkerhed at er sammensat. Den mindste værdi af m for hvilken man ikke kender statussen af , er m=33.

Man kan let indse at hvis et tal af typen 2k+1 skal være et primtal, så må k selv være en potens af 2, altså k=2m. Thi hvis k havde en ulige divisor d forskellig fra 1, så ville 2k+1 være et sammensat tal fordi det var deleligt med 2k/d+1. Bemærk at hvis k er et ulige tal så er 2k+1 deleligt med 2k/k+1 = 3.


Previous Page Next Page