Die Dirac-Gleichung ist eine grundlegende Gleichung der relativistischen Quantenmechanik. Sie beschreibt die Eigenschaften und das Verhalten eines fundamentalen Fermions mit Spin 1/2 (zum Beispiel Elektron, Quark). Sie wurde 1928 von Paul Dirac entwickelt[1] und erfüllt im Gegensatz zur Schrödingergleichung die Anforderungen der speziellen Relativitätstheorie.
Die Dirac-Gleichung ist eine partielle Differentialgleichung erster Ordnung sowohl in den drei Raumkoordinaten als auch in der Zeit, im Einklang mit der von der speziellen Relativitätstheorie geforderten Invarianz unter Lorentz-Transformationen. Im nichtrelativistischen Grenzfall () geht sie in die Pauli-Gleichung über, die im Gegensatz zur Schrödingergleichung noch die Spin-Bahn-Kopplung und weitere Terme enthält. Jede Lösung der Dirac-Gleichung entspricht einem möglichen Zustand des betreffenden Teilchens, mit der Besonderheit, dass zur Darstellung dieses Zustands vier räumliche Wellenfunktionen nötig sind (s. Dirac-Spinor), statt zwei in der nichtrelativistischen Theorie mit Spin oder einer einzigen im Fall von spinlosen Teilchen. Für die von der Dirac-Gleichung beschriebenen Teilchen gilt:
Alle genannten Eigenschaften entsprechen den experimentellen Befunden. Zur Zeit der Entdeckung der Dirac-Gleichung 1928 waren die vier erstgenannten schon bekannt, nicht aber ihre gemeinsame Grundlage. Die letztgenannte Eigenschaft wurde durch die Dirac-Gleichung vorhergesagt, und der erste Nachweis eines Antiteilchens gelang 1932 Carl David Anderson[2] (s. Positron).
Der in der Diracgleichung vorkommende Differentialoperator spielt auch in der Mathematik (Differentialgeometrie) eine große Rolle (Dirac-Operator).