Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Eilenberg-MacLane-Raum

In der algebraischen Topologie, einem Teilgebiet der Mathematik, ist ein Eilenberg-MacLane-Raum ein topologischer Raum mit einer einzigen nicht trivialen Homotopiegruppe.

Für eine Gruppe G und eine positive natürliche Zahl heißt ein zusammenhängender topologischer Raum ein Eilenberg-MacLane-Raum , falls die n-te Homotopiegruppe isomorph zu G ist und alle anderen Homotopiegruppen trivial sind.

Falls und G abelsch oder und G beliebig ist, existiert ein solcher Raum, ist ein zusammenhängender CW-Komplex und bis auf Homotopieäquivalenz eindeutig bestimmt. Folglich wird ein solcher CW-Komplex auch als „der“ bezeichnet.

Der Name ist auf die Mathematiker Samuel Eilenberg und Saunders Mac Lane zurückzuführen, die solche Räume in den 1940er Jahren studierten.

Eilenberg-MacLane-Räume haben Anwendungen in verschiedenen Bereichen: Sie können einerseits in der Homotopietheorie als Bausteine für CW-Komplexe dienen, die mittels Faserungen mit Fasern in einem Postnikow-Turm zusammengesetzt werden. Damit können beispielsweise Homotopiegruppen von Sphären berechnet werden. Andererseits können mit ihrer Hilfe Kohomologieoperationen definiert werden und sie sind darstellende Räume für die singuläre Kohomologie.

Ein verallgemeinerter Eilenberg-MacLane-Raum ist ein Raum, der homotopieäquivalent zu einem Produkt von Eilenberg-MacLane-Räumen ist.


Previous Page Next Page