Das Halteproblem beschreibt eine Frage aus der theoretischen Informatik.
Wenn für eine Berechnung mehrere Rechenschritte nach festen Regeln durchgeführt werden, entsteht eine Berechnungsvorschrift, ein sogenannter Algorithmus. Zur Ausführung von Algorithmen benutzt man in der theoretischen Informatik abstrakte Maschinen. Eine typische abstrakte Maschine ist die Turingmaschine. Das Halteproblem beschreibt die Frage, ob die Ausführung eines Algorithmus zu einem Ende gelangt. Obwohl das für viele Algorithmen leicht beantwortet werden kann, konnte der Mathematiker Alan Turing beweisen, dass es keinen Algorithmus gibt, der diese Frage für alle möglichen Algorithmen und beliebige Eingaben beantwortet. Diesen Beweis vollzog er an einer Turingmaschine. Das Halteproblem ist somit algorithmisch nicht entscheidbar. Das Resultat spielt eine grundlegende Rolle in der Berechenbarkeitstheorie. Der Begriff Halteproblem wurde nicht von Turing geprägt, sondern erst später durch Martin Davis in seinem Buch Computability and Unsolvability.[1]