Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Koordinatenraum

Der Koordinatenraum in zwei reellen Dimensionen besteht aus allen Vektoren, die den Koordinatenursprung als Anfangspunkt besitzen

Der Koordinatenraum, Standardraum oder Standardvektorraum ist in der Mathematik der Vektorraum der -Tupel mit Komponenten aus einem gegebenen Körper versehen mit der komponentenweisen Addition und Skalarmultiplikation. Die Elemente des Koordinatenraums nennt man entsprechend Koordinatenvektoren oder Koordinatentupel. Die Standardbasis für den Koordinatenraum besteht aus den kanonischen Einheitsvektoren. Lineare Abbildungen zwischen Koordinatenräumen werden durch Matrizen dargestellt. Die Koordinatenräume besitzen in der linearen Algebra eine besondere Bedeutung, da jeder endlichdimensionale Vektorraum zu einem Koordinatenraum isomorph (strukturell gleich) ist.

Die zwei- und dreidimensionalen reellen Koordinatenräume dienen oft als Modelle für die euklidische Ebene und den dreidimensionalen euklidischen Raum. In diesem Fall werden ihre Elemente sowohl als Punkte wie auch als Vektoren aufgefasst.


Previous Page Next Page






Coordinate space English Koordinátatér Hungarian 数ベクトル空間 Japanese Coördinatenruimte Dutch Координатное пространство Russian

Responsive image

Responsive image