Das Parallelenaxiom ist ein viel diskutiertes Axiom der euklidischen Geometrie. In einer häufig gebrauchten, auf John Playfair zurückgehenden Formulierung besagt es:
„In einer Ebene gibt es zu jeder Geraden und jedem Punkt außerhalb von genau eine Gerade, die zu parallel ist und durch den Punkt geht.“
„Parallel“ bedeutet dabei, dass die Geraden in einer Ebene liegen, aber keinen gemeinsamen Punkt haben.
Diese eindeutig bestimmte Gerade heißt die Parallele zu durch den Punkt .
Historisch wurde das Parallelenpostulat zuerst von Euklid in den Elementen formuliert (als das letzte seiner fünf Postulate), allerdings in ganz anderer Form: „Gefordert soll sein: … dass, wenn eine gerade Linie [] beim Schnitt mit zwei geraden Linien [ und ] bewirkt, dass innen auf derselben Seite entstehende Winkel [ und ] zusammen kleiner als zwei Rechte werden, dann die zwei geraden Linien [ und ] bei Verlängerung ins Unendliche sich treffen auf der Seite [von ], auf der die Winkel [ und ] liegen, die zusammen kleiner als zwei Rechte sind.“
Es lässt sich aus den übrigen Postulaten und Axiomen des Euklid beweisen, dass sein fünftes Postulat zur eingangs gegebenen Formulierung äquivalent ist.
Die Benennung des Parallelenpostulats schwankt in der Literatur. Häufig wird es das Fünfte Postulat von Euklid (Elemente, Buch 1) genannt, manchmal wurde es aber auch 11. Axiom oder 13. Axiom genannt.[1]