Die Proton-Proton-Reaktion (p-p-Reaktion, Proton-Proton-Kette) ist eine von zwei Fusionsreaktionen des sogenannten Wasserstoffbrennens, durch welche in Sternen Wasserstoff in Helium umgewandelt wird.
Bei Sternen mit Massen bis etwa 1,5 Sonnenmassen (M☉) spielt die Proton-Proton-Reaktion eine wichtigere Rolle bei der Energieumwandlung als der CNO-Zyklus.[1] Etwa werden durch sie mehr als 98 % der Leuchtkraft der Sonne erzeugt.[2]
Der stark exotherme Charakter der Fusion rührt daher, dass das Endprodukt Helium eine um etwa 0,71 % geringere Masse aufweist als die in die Reaktion eingegangenen Wasserstoffteilchen (Massendefekt).[3] Die Differenz wird dabei entsprechend der Äquivalenz von Masse und Energie () als Energie freigesetzt.
Die Proton-Proton-Reaktion hat die niedrigsten Temperaturvoraussetzungen aller in Sternen auftretenden Fusionsreaktionen. (In Braunen Zwergen laufen zwar auch unterhalb dieser Grenze Fusionsreaktionen ab, das Deuteriumbrennen, sie zählen aber nicht zu den Sternen.) Sie kann in Sternen mit einer Kerntemperatur von mehr als 3 Millionen Kelvin ablaufen. Bei diesen Temperaturen sind alle beteiligten Atomkerne vollständig ionisiert, d. h. ohne Elektronenhülle.
Die Fusionsrate ist bei der Proton-Proton-Reaktion proportional zur 4. Potenz der Temperatur.[4] Mithin bewirkt eine Erhöhung der Temperatur um 5 % eine Steigerung der Energiefreisetzung von 22 %.