Radialsymmetrie ist eine Form der Symmetrie, bei der ein Objekt invariant gegenüber allen Rotationen (also allen Winkeln und allen Achsen durch das Symmetriezentrum) und Spiegelungen ist. Für ein Bezugssystem ist also nur der Koordinatenursprung, nicht aber die Ausrichtung von Bedeutung, wenn man ein radialsymmetrisches Objekt beschreiben will. Im dreidimensionalen Fall nennt man die Radialsymmetrie auch Kugelsymmetrie, da Kugeln (genauer: auch konzentrische Kombinationen von Kugeloberflächen) die einzigen radialsymmetrischen dreidimensionalen Objekte sind. Funktionen und Vektorfelder, die Radialsymmetrie aufweisen, werden Radialfelder genannt.