Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Reihe (Mathematik)

Animation der Konvergenz der Reihe gegen 1. Mit jedem neuen Summanden wird der „Abstand“ zum Grenzwert halbiert.

Eine Reihe, selten Summenfolge oder unendliche Summe und vor allem in älteren Darstellungen auch unendliche Reihe genannt, ist ein Objekt aus dem mathematischen Teilgebiet der Analysis. Anschaulich ist eine Reihe eine Summe mit unendlich vielen Summanden, wie etwa

Man kann Reihen als rein formale Objekte studieren, jedoch sind Mathematiker in vielen Fällen an der Frage interessiert, ob eine Reihe konvergiert, ob also die Summe endlich vieler Summanden durch Hinzunahme hinreichend vieler weiterer Summanden einem festen Wert beliebig nahe kommt. So konvergiert etwa die obige Beispielreihe gegen den Wert (siehe Bild), allerdings existieren auch divergente (also nicht konvergente) Reihen, wie zum Beispiel

Allgemein wird eine Reihe mit bezeichnet, und dies ist, falls existent, gleichzeitig die Bezeichnung für den Grenzwert.

Präzise wird eine Reihe als eine Folge definiert, deren Glieder die Partialsummen einer anderen Folge sind. Wenn man die Zahl 0 zur Indexmenge zählt, ist die -te Partialsumme die Summe der ersten (von den unendlich vielen) Summanden. Falls die Folge dieser Partialsummen einen Grenzwert besitzt, so wird dieser der Wert oder die Summe der Reihe genannt.

Eine systematische Theorie der Reihen findet ihren Ursprung im 17. Jahrhundert, wo sie besonders durch Gottfried Wilhelm Leibniz und Isaac Newton vorangetrieben wurde. Dabei stand sie in enger Verbindung zu anschaulichen Problemen aus der Geometrie, wie der Integration von Kurven. Als formale Objekte wurden Reihen im 18. Jahrhundert von Mathematikern wie Leonhard Euler studiert, der ihnen drei Bände seines Gesamtwerkes, der Opera Omnia, widmete. Erst im 19. Jahrhundert stieß dieser Umgang, der Fragen nach Konvergenz oder Divergenz außen vor ließ, auf Kritik. In einer wegweisenden Schrift aus dem Jahr 1821 schuf Augustin-Louis Cauchy die Grundlagen der bis heute gebräuchlichen „quantitativen“ Theorie unendlicher Reihen und bereitete der mathematisch strengen Aufarbeitung der Analysis, etwa durch Karl Weierstraß, den Weg. Von zentraler Bedeutung in diesem Zusammenhang war das Cauchy-Kriterium für die Charakterisierung des Konvergenzbegriffs. Bis in die heutige Zeit sind Reihen, etwa im Kontext der Zahlentheorie, ein Objekt intensiver mathematischer Forschung.

Für die Untersuchung einer unendlichen Reihe sind vor allen Dingen die Fragen nach ihrer Konvergenz und, wenn diese gegeben ist, nach dem Grenzwert von Bedeutung. Für beides existieren keine brauchbaren allgemeinen Methoden. Allerdings wurden Kriterien entwickelt, die in einigen Spezialfällen Antworten liefern.

Besonders bedeutende Anwendungen haben Reihen in der Analysis (zum Beispiel über Taylorreihen zu analytischen Funktionen), den Ingenieurwissenschaften (etwa in der Elektrotechnik und Signalverarbeitung über Fourierreihen), aber auch in der Wirtschaftswissenschaft und Finanzmathematik. Einige bedeutende mathematische Konstanten, etwa die Kreiszahl oder die Eulersche Zahl , konnten mit Hilfe von Algorithmen, die auf unendlichen Reihen fußen, auf viele Billionen Nachkommastellen angenähert werden.


Previous Page Next Page