Der Satz von Desargues, benannt nach dem französischen Mathematiker Gérard Desargues, ist zusammen mit dem Satz von Pappos einer der Schließungssätze, die für die affine und die projektive Geometrie als Axiome grundlegend sind. Er wird je nach zugrundeliegender Geometrie in einer affinen oder einer projektiven Variante formuliert. In beiden Formen kann der desarguessche aus dem papposschen Satz gefolgert werden. Da es sowohl affine als auch projektive Ebenen gibt, in denen der Satz von Desargues, aber nicht der Satz von Pappos allgemeingültig ist, stellt er eine echte Abschwächung des Satzes von Pappos dar.
Projektive Form: Wenn sich die Geraden durch zwei sich entsprechende Eckpunkte (siehe Bild) zweier in einer Ebene gelegener Dreiecke und in einem Punkt (dem „Zentrum“) schneiden und die sich entsprechenden verlängerten Seiten sich jeweils in Punkten schneiden, so liegen diese drei Punkte auf einer Geraden (der „Achse“). Die Umkehrung gilt auch.
Projektiv bedeutet hier: alle vorkommenden Geraden schneiden sich, was in einer affinen Ebene nicht der Fall sein muss (siehe affine Form am Ende der Einleitung).
Liegt bei einer Konfiguration das Zentrum auf der Achse , so spricht man vom kleinen Satz von Desargues.
Affine Form: Wenn sich die Geraden durch zwei sich entsprechende Eckpunkte zweier in einer Ebene gelegener Dreiecke in einem Punkt schneiden und zwei Paare korrespondierender Seiten der Dreiecke parallel sind, so ist auch das dritte Paar korrespondierender Seiten parallel.
Die affine Form des kleinen Satzes von Desargues ergibt sich, wenn statt des gemeinsamen Schnittpunkts die Parallelität der Trägergeraden , , vorausgesetzt wird.