Siegelsche Modulformen sind Verallgemeinerungen von Modulformen in mehreren komplexen Variablen und Beispiele für Automorphe Formen und Shimura-Varietäten.
Sie sind auf dem Siegelschen Halbraum definiert, dem Raum der komplexen symmetrischen -Matrizen mit positiv definitem Imaginärteil. Siegelsche Modulformen sind holomorphe Funktionen auf dem Siegelschen Halbraum, die eine Automorphiebedingung erfüllen.
Sie stehen in ähnlicher Relation zu Abelschen Varietäten wie elliptische Modulformen zu elliptischen Kurven. Ursprünglich wurden sie von Carl Ludwig Siegel 1935 eingeführt im Rahmen seiner analytischen Theorie quadratischer Formen und finden Anwendungen in der Zahlentheorie.
Es gibt Siegelsche Modulformen, die analog Eisensteinreihen bei Modulformen konstruiert sind, und solche, die Thetafunktionen zu quadratischen Formen sind. Die Theorie wurde in möglichst weitgehender Anlehnung an die der elliptischen Modulformen aufgebaut.