Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Standardmodell

Das Standardmodell der Elementarteilchenphysik (auch Standardmodell der Teilchenphysik, kurz Standardmodell (SM)) fasst die wesentlichen Erkenntnisse der Teilchenphysik nach heutigem Stand zusammen.[1] Es beschreibt alle bekannten Elementarteilchen und die wichtigen Wechselwirkungen zwischen ihnen: die starke Wechselwirkung, beschrieben durch die Quantenchromodynamik, die schwache Wechselwirkung und die elektromagnetische Wechselwirkung, vereinheitlicht beschrieben durch die Elektroschwache Wechselwirkung. Nur die (vergleichsweise sehr schwache) Gravitation wird nicht berücksichtigt.

In theoretischer Hinsicht ist das Standardmodell eine Quantenfeldtheorie. Ihre fundamentalen Objekte sind Felder, die nur in diskreten Paketen verändert werden; die diskreten Pakete entsprechen in einer passenden Darstellung den beobachteten Teilchen. Das Standardmodell ist so gebaut, dass die von ihm beschriebenen Teilchen und Felder die Gesetze der speziellen Relativitätstheorie erfüllen. Gleichzeitig enthält es die Aussagen der Quantenmechanik.

Viele Voraussagen des Standardmodells wurden durch Experimente der Teilchenphysik bestätigt. Insbesondere ist die Existenz auch derjenigen Elementarteilchen des Modells nachgewiesen, die erst von der Theorie vorhergesagt wurden. Die gemessenen quantitativen Eigenschaften der Teilchen stimmen sehr gut mit den Vorhersagen des Standardmodells überein. Ein besonders deutliches Beispiel dafür ist der g-Faktor des Elektrons.

Es gibt dennoch Gründe für die Annahme, dass das Standardmodell nur ein Aspekt einer noch umfassenderen Theorie ist. Dunkle Materie und Dunkle Energie werden vom Standardmodell nicht beschrieben. Seine Aussagen führen bei hohen Energien, wie sie beim Urknall auftraten, zu Widersprüchen mit der allgemeinen Relativitätstheorie. Außerdem müssen 18 Parameter, deren Werte nicht aus der Theorie hervorgehen, anhand von experimentellen Ergebnissen festgelegt werden. Es wird dadurch recht „biegsam“ und kann sich in einem gewissen Rahmen den tatsächlich gemachten Beobachtungen anpassen. Es gibt auch zahlreiche Bemühungen, das Standardmodell zu erweitern oder abzulösen.

Das Standardmodell allein reicht in der Physik für die theoretische Beschreibung in der Praxis meist nicht aus, um die Phänomene zu beschreiben, vielmehr gibt es für jede Größenskala (in Raumzeit und Energie-Impuls, wobei diese aufgrund der Quantenmechanik gekoppelt sind) und für das gerade interessierende physikalische Umfeld eigene sog. effektive Theorien – zum Beispiel bei der Beschreibung von Sternen, Flüssigkeiten, Festkörpern, Atomen, Atomkernen – und für Übergänge zwischen Skalen die Renormierungsgruppe. In der Elementarteilchenphysik wird dieser Übergang zwischen unterschiedlichen Skalen – die auch in der im frühen Universums nach der Urknalltheorie durchlaufen werden – durch Phasenübergänge und „gleitende“ Kopplungskonstanten gekennzeichnet.

  1. Brockhaus Enzyklopädie, 21. Auflage, 2006.

Previous Page Next Page