Eine universelle Eigenschaft ist eine Methode der Mathematik, und dort insbesondere der abstrakten Algebra, sich eine gewünschte Struktur ohne Angabe einer konkreten Konstruktion zu verschaffen. Dabei wird für Objekte einer bestimmten Kategorie , z. B. der Kategorie der abstrakten Algebren, eine Eigenschaft festgelegt, z. B., dass es von einem Vektorraum eine injektive Abbildung in die Algebra gebe.
Die Universalkonstruktion besteht nun darin, die Existenz eines „kleinsten“ Elements der Kategorie zu behaupten, das die Eigenschaft erfüllt. Im Beispiel wäre das die Tensoralgebra von . „Kleinstes“ zu sein bedeutet, dass es zu jedem Objekt der Kategorie , das die geforderte Eigenschaft erfüllt, einen eindeutig bestimmten Morphismus gibt, der mit der Eigenschaft verträglich ist, im Beispiel mit der Einbettung von vertauscht.
Das „kleinste“ Element muss nicht eindeutig bestimmt sein, jedoch sind alle „kleinsten“ Elemente, sofern existent, isomorph. Als Existenzbeweis kann eine konkrete Konstruktion angegeben werden, jedoch sind die Details so einer Konstruktion für die Theorie der Struktur meistens unwesentlich.