In der Mathematik ist das Urbild ein Begriff, der im Zusammenhang mit Funktionen verwendet wird. Für eine Funktion ist das Urbild einer Menge jene Teilmenge der Definitionsmenge , deren Elemente auf die vorher festgelegte Untermenge der Zielmenge abgebildet werden. Das Urbild ist also die Antwort auf die Frage: Welche Elemente aus der Definitionsmenge werden auf Elemente der Menge abgebildet? Man sagt dann auch Urbild von unter .
Das Urbild eines einzelnen Elements der Zielmenge ist die aus allen mit bestehende Teilmenge der Definitionsmenge. Das Urbild der Bildmenge (und natürlich erst recht der ganzen Zielmenge ) ist genau die Definitionsmenge , da Funktionen linkstotal sind, also jedem Element der Definitionsmenge mindestens ein Element der Zielmenge (und genau ein Element der Bildmenge) zuordnen.