Der Zwei-Quadrate-Satz von Fermat ist ein mathematischer Satz der Zahlentheorie:
Primzahlen, die letztere Bedingung erfüllen, nennt man auch pythagoreische Primzahlen.
Beispielsweise sind die Primzahlen 5, 13, 17, 29, 37, 41 kongruent zu 1 modulo 4 und können als Summe zweier Quadrate geschrieben werden:
Andererseits sind die Primzahlen 3, 7, 11, 19, 23 und 31 kongruent zu 3 modulo 4 und können nicht als Summe zweier Quadrate geschrieben werden.
Als Arbeitsdefinition wird im Folgenden darstellbare Zahl kurz für „Zahl, die eine Darstellung als Summe zweier Quadratzahlen besitzt“ gebraucht. Dies entspricht auch dem Sprachgebrauch des im Buch der Beweise vorgestellten Beweises, den wir im Folgenden skizzieren wollen:[1]
Der einfachere Teil des Satzes (dass jede darstellbare ungerade Primzahl pythagoreisch ist) folgt ganz leicht aus der Tatsache, dass ein Quadrat modulo 4 nur zu 0 oder zu 1 kongruent sein kann. Daher ging es immer nur darum, zu zeigen, dass auch umgekehrt jede pythagoreische Zahl darstellbar ist.