Semiconductor device fabrication |
---|
MOSFET scaling (process nodes) |
The "22 nm" node is the process step following 32 nm in CMOS MOSFET semiconductor device fabrication. The typical half-pitch (i.e., half the distance between identical features in an array) for a memory cell using the process is around 22 nm.[citation needed] It was first demonstrated by semiconductor companies for use in RAM in 2008. In 2010, Toshiba began shipping 24 nm flash memory chips, and Samsung Electronics began mass-producing 20 nm flash memory chips. The first consumer-level CPU deliveries using a 22 nm process started in April 2012 with the Intel Ivy Bridge processors.
Since at least 1997, "process nodes" have been named purely on a marketing basis, and have no relation to the dimensions on the integrated circuit;[1] neither gate length, metal pitch or gate pitch on a "22nm" device is twenty-two nanometers.[2][3][4][5]
The ITRS 2006 Front End Process Update indicates that equivalent physical oxide thickness will not scale below 0.5 nm (about twice the diameter of a silicon atom), which is the expected value at the 22 nm node. This is an indication that CMOS scaling in this area has reached a wall at this point, possibly disturbing Moore's law.
The 20-nanometre node is an intermediate half-node die shrink based on the 22-nanometre process.
TSMC began mass production of 20 nm nodes in 2014.[6] The 22 nm process was superseded by commercial 14 nm FinFET technology in 2014.