Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


3D bioprinting

Different models of 3D printing tissue and organs

Three dimensional (3D) bioprinting is the use of 3D printing–like techniques to combine cells, growth factors, bio-inks, and biomaterials to fabricate functional structures that were traditionally used for tissue engineering applications but in recent times have seen increased interest in other applications such as biosensing, and environmental remediation.[1][2][3] Generally, 3D bioprinting uses a layer-by-layer method to deposit materials known as bio-inks to create tissue-like structures that are later used in various medical and tissue engineering fields.[4][5][6] 3D bioprinting covers a broad range of bioprinting techniques and biomaterials. Currently, bioprinting can be used to print tissue and organ models to help research drugs and potential treatments.[7] Nonetheless, translation of bioprinted living cellular constructs into clinical application is met with several issues due to the complexity and cell number necessary to create functional organs.[8] However, innovations span from bioprinting of extracellular matrix to mixing cells with hydrogels deposited layer by layer to produce the desired tissue.[9] In addition, 3D bioprinting has begun to incorporate the printing of scaffolds which can be used to regenerate joints and ligaments.[10] Apart from these, 3D bioprinting has recently been used in environmental remediation applications, including the fabrication of functional biofilms that host functional microorganisms that can facilitate pollutant removal.[11]

  1. ^ Murphy SV, Atala A (August 2014). "3D bioprinting of tissues and organs". Nature Biotechnology. 32 (8): 773–785. doi:10.1038/nbt.2958. ISSN 1546-1696. PMID 25093879. S2CID 22826340.
  2. ^ Lehner BA, Schmieden DT, Meyer AS (March 1, 2017). "A Straightforward Approach for 3D Bacterial Printing". ACS Synthetic Biology. 6 (7): 1124–1130. doi:10.1021/acssynbio.6b00395. ISSN 2161-5063. PMC 5525104. PMID 28225616.
  3. ^ Cite error: The named reference :0 was invoked but never defined (see the help page).
  4. ^ Warren D, Tomaskovic-Crook E, Wallace GG, Crook JM (2021). "Engineering in vitro human neural tissue analogs by 3D bioprinting and electrostimulation". APL Bioengineering. 5 (2). doi:10.1063/5.0032196. PMC 8019355.
  5. ^ Roche CD, Brereton RJ, Ashton AW, Jackson C, Gentile C (2020). "Current challenges in three-dimensional bioprinting heart tissues for cardiac surgery". European Journal of Cardio-Thoracic Surgery. 58 (3): 500–510. doi:10.1093/ejcts/ezaa093. PMC 8456486. PMID 32391914.
  6. ^ Chimene D, Lennox KK, Kaunas RR, Gaharwar AK (2016). "Advanced Bioinks for 3D Printing: A Materials Science Perspective". Annals of Biomedical Engineering. 44 (6): 2090–2102. doi:10.1007/s10439-016-1638-y. PMID 27184494. S2CID 1251998.
  7. ^ Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, et al. (October 2015). "Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels". Science Advances. 1 (9): e1500758. Bibcode:2015SciA....1E0758H. doi:10.1126/sciadv.1500758. PMC 4646826. PMID 26601312.
  8. ^ Murphy SV, De Coppi P, Atala A (April 2020). "Opportunities and challenges of translational 3D bioprinting". Nature Biomedical Engineering. 4 (4): 370–380. doi:10.1038/s41551-019-0471-7. ISSN 2157-846X. PMID 31695178. S2CID 207912104.
  9. ^ Roche CD, Sharma P, Ashton AW, Jackson C, Xue M, Gentile C (2021). "Printability, durability, contractility and vascular network formation in 3D bioprinted cardiac endothelial cells using alginate–gelatin hydrogels". Frontiers in Bioengineering and Biotechnology. 9: 110. doi:10.3389/fbioe.2021.636257. PMC 7968457. PMID 33748085.
  10. ^ Nakashima Y, Okazak K, Nakayama K, Okada S, Mizu-uchi H (January 2017). "Bone and Joint Diseases in Present and Future". Fukuoka Igaku Zasshi = Hukuoka Acta Medica. 108 (1): 1–7. PMID 29226660.
  11. ^ Zhao T, Liu Y, Wu Y, Zhao M, Zhao Y (December 1, 2023). "Controllable and biocompatible 3D bioprinting technology for microorganisms: Fundamental, environmental applications and challenges". Biotechnology Advances. 69: 108243. doi:10.1016/j.biotechadv.2023.108243. ISSN 0734-9750. PMID 37647974. S2CID 261383630.

Previous Page Next Page