Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Abram Besicovitch

Abram Besicovitch
Born
Abram Samoilovitch Besicovitch

(1891-01-24)24 January 1891
Died2 November 1970(1970-11-02) (aged 79)
NationalityRussian Empire and British
Alma materSt Petersburg University
Known forHausdorff–Besicovitch dimension
Kovner–Besicovitch measure
Besicovitch covering theorem
Besicovitch inequality
Besicovitch functions
Besicovitch set
AwardsAdams Prize (1930)
De Morgan Medal (1950)
Sylvester Medal (1952)
Fellow of the Royal Society[1]
Scientific career
FieldsMathematics
InstitutionsUniversity of Liverpool
University of Cambridge
Doctoral advisorAndrey Markov[2]
Doctoral studentsJoseph Gillis
Patrick Moran
Gholamhossein Mosaheb[2]

Abram Samoilovitch Besicovitch (or Besikovitch;[1] Russian: Абра́м Само́йлович Безико́вич; 23 January 1891 – 2 November 1970) was a Russian mathematician, who worked mainly in England. He was born in Berdyansk on the Sea of Azov (now in Ukraine) to a Karaite Jewish family.[3][4][5][6][7][8]

  1. ^ a b Burkill, J. C. (1971). "Abram Samoilovitch Besicovitch 1891-1970". Biographical Memoirs of Fellows of the Royal Society. 17: 1–16. doi:10.1098/rsbm.1971.0001.
  2. ^ a b Abram Besicovitch at the Mathematics Genealogy Project
  3. ^ Besicovitch, A. S. (1926). "On generalized almost periodic functions". Proc. London Math. Soc. 25 (2): 495–512. doi:10.1112/plms/s2-25.1.495.
  4. ^ Tamarkin, J. D. (1935). "Besicovitch on Almost Periodic Functions". Bull. Am. Math. Soc. 41 (7): 461–462. doi:10.1090/s0002-9904-1935-06112-9.
  5. ^ Besicovitch, A. S. (1963). "The Kakeya Problem". American Mathematical Monthly. 70 (7): 697–706. doi:10.2307/2312249. JSTOR 2312249. MR 0157266.
  6. ^ O'Connor, John J.; Robertson, Edmund F., "Abram Besicovitch", MacTutor History of Mathematics Archive, University of St Andrews
  7. ^ Besicovitch On Kakeyas Problem and a similar one, Math. Zeitschrift vol.27, 1928, 312
  8. ^ Besicovitch On linear sets of points of fractal dimension, Math. Annalen 1929, Teil 2 Archived 7 January 2016 at the Wayback Machine,

Previous Page Next Page