Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Bacterial growth

Growth is shown as L = log(numbers) where numbers is the number of colony forming units per ml, versus T (time.)

Bacterial growth is proliferation of bacterium into two daughter cells, in a process called binary fission. Providing no mutation event occurs, the resulting daughter cells are genetically identical to the original cell. Hence, bacterial growth occurs. Both daughter cells from the division do not necessarily survive. However, if the surviving number exceeds unity on average, the bacterial population undergoes exponential growth. The measurement of an exponential bacterial growth curve in batch culture was traditionally a part of the training of all microbiologists; the basic means requires bacterial enumeration (cell counting) by direct and individual (microscopic, flow cytometry[1]), direct and bulk (biomass), indirect and individual (colony counting), or indirect and bulk (most probable number, turbidity, nutrient uptake) methods. Models reconcile theory with the measurements.[2]

  1. ^ Skarstad K, Steen HB, Boye E (1983). "Cell cycle parameters of slowly growing Escherichia coli B/r studied by flow cytometry". J. Bacteriol. 154 (2): 656–62. doi:10.1128/jb.154.2.656-662.1983. PMC 217513. PMID 6341358.
  2. ^ Zwietering MH, Jongenburger I, Rombouts FM, van 'T Riet K (1990). "Modeling of the Bacterial Growth Curve". Applied and Environmental Microbiology. 56 (6): 1875–1881. Bibcode:1990ApEnM..56.1875Z. doi:10.1128/aem.56.6.1875-1881.1990. PMC 184525. PMID 16348228.

Previous Page Next Page