In functional analysis, a branch of mathematics, a Beppo Levi space, named after Beppo Levi, is a certain space of generalized functions.
In the following, D′ is the space of distributions, S′ is the space of tempered distributions in Rn, Dα the differentiation operator with α a multi-index, and
is the Fourier transform of v.
The Beppo Levi space is
![{\displaystyle {\dot {W}}^{r,p}=\left\{v\in D'\ :\ |v|_{r,p,\Omega }<\infty \right\},}](https://wikimedia.org/api/rest_v1/media/math/render/svg/ad8559cd6ae4250a0dfd9b853779a15c8b4f41b9)
where |⋅|r,p denotes the Sobolev semi-norm.
An alternative definition is as follows: let m ∈ N, s ∈ R such that
![{\displaystyle -m+{\tfrac {n}{2}}<s<{\tfrac {n}{2}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/3c731d8b583da99adc251d942583381cf6029cbb)
and define:
![{\displaystyle {\begin{aligned}H^{s}&=\left\{v\in S'\ :\ {\widehat {v}}\in L_{\text{loc}}^{1}(\mathbf {R} ^{n}),\int _{\mathbf {R} ^{n}}|\xi |^{2s}|{\widehat {v}}(\xi )|^{2}\,d\xi <\infty \right\}\\[6pt]X^{m,s}&=\left\{v\in D'\ :\ \forall \alpha \in \mathbf {N} ^{n},|\alpha |=m,D^{\alpha }v\in H^{s}\right\}\\\end{aligned}}}](https://wikimedia.org/api/rest_v1/media/math/render/svg/f1ade91d5ece5a6323afa320ce488fe4ac4f8887)
Then Xm,s is the Beppo-Levi space.