Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Cassini projection

Cassini projection of the world
Cassini projection with 1,000 km indicatrices
Cassini projection of the world modeled as a highly oblate ellipsoid with flattening 1:2 (= eccentricity 32)

The Cassini projection (also sometimes known as the Cassini–Soldner projection or Soldner projection[1]) is a map projection first described in an approximate form by César-François Cassini de Thury in 1745. Its precise formulas were found through later analysis by Johann Georg von Soldner around 1810.[2] It is the transverse aspect of the equirectangular projection, in that the globe is first rotated so the central meridian becomes the "equator", and then the normal equirectangular projection is applied. Considering the earth as a sphere, the projection is composed of the operations:

where λ is the longitude from the central meridian and φ is the latitude. When programming these equations, the inverse tangent function used is actually the atan2 function, with the first argument sin φ and the second cos φ cos λ.

The reverse operation is composed of the operations:

In practice, the projection has always been applied to models of the earth as an ellipsoid, which greatly complicates the mathematical development but is suitable for surveying. Nevertheless, the use of the Cassini projection has largely been superseded by the transverse Mercator projection, at least with central mapping agencies.

  1. ^ "Cassini–Soldner – Help". Environmental Systems Research Institute, Inc. Retrieved 9 June 2016.
  2. ^ Flattening the Earth: Two Thousand Years of Map Projections, John P. Snyder, 1993, pp. 74–76, ISBN 0-226-76747-7.

Previous Page Next Page






Projection de Cassini French Proiezione di Cassini Italian カッシーニ図法 Japanese കാസ്സിനി പ്രൊജക്ഷൻ Malayalam

Responsive image

Responsive image