Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Collision resistance

In cryptography, collision resistance is a property of cryptographic hash functions: a hash function H is collision-resistant if it is hard to find two inputs that hash to the same output; that is, two inputs a and b where ab but H(a) = H(b).[1]: 136  The pigeonhole principle means that any hash function with more inputs than outputs will necessarily have such collisions;[1]: 136  the harder they are to find, the more cryptographically secure the hash function is.

The "birthday paradox" places an upper bound on collision resistance: if a hash function produces N bits of output, an attacker who computes only 2N/2 (or ) hash operations on random input is likely to find two matching outputs. If there is an easier method to do this than brute-force attack, it is typically considered a flaw in the hash function.[2]

Cryptographic hash functions are usually designed to be collision resistant. However, many hash functions that were once thought to be collision resistant were later broken. MD5 and SHA-1 in particular both have published techniques more efficient than brute force for finding collisions.[3][4] However, some hash functions have a proof that finding collisions is at least as difficult as some hard mathematical problem (such as integer factorization or discrete logarithm). Those functions are called provably secure.[2]

  1. ^ a b Goldwasser, S. and Bellare, M. "Lecture Notes on Cryptography" Archived 2012-04-21 at the Wayback Machine. Summer course on cryptography, MIT, 1996-2001
  2. ^ a b Pass, R. "Lecture 21: Collision-Resistant Hash Functions and General Digital Signature Scheme". Course on Cryptography, Cornell University, 2009
  3. ^ Xiaoyun Wang; Hongbo Yu. "How to Break MD5 and Other Hash Functions" (PDF). Archived from the original (PDF) on 2009-05-21. Retrieved 2009-12-21.
  4. ^ Xiaoyun Wang; Yiqun Lisa Yin; Hongobo Yu. Finding Collisions in the Full SHA-1 (PDF). CRYPTO 2005. doi:10.1007/11535218_2.

Previous Page Next Page






Kollisionsresistenz German Résistance aux collisions French Resistenza alle collisioni Italian Resistência à colisão Portuguese Kollisionsresistens Swedish

Responsive image

Responsive image