Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Direct image functor

In mathematics, the direct image functor is a construction in sheaf theory that generalizes the global sections functor to the relative case. It is of fundamental importance in topology and algebraic geometry. Given a sheaf F defined on a topological space X and a continuous map f: XY, we can define a new sheaf fF on Y, called the direct image sheaf or the pushforward sheaf of F along f, such that the global sections of fF is given by the global sections of F. This assignment gives rise to a functor f from the category of sheaves on X to the category of sheaves on Y, which is known as the direct image functor. Similar constructions exist in many other algebraic and geometric contexts, including that of quasi-coherent sheaves and étale sheaves on a scheme.


Previous Page Next Page






順像関手 Japanese Функтор прямого образа Russian Прямий образ пучка Ukrainian

Responsive image

Responsive image