Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Dome (geology)

The Richat Structure in the Sahara Desert of Mauritania. Once considered to be an impact structure, it is now classified as a geologic dome uplifted by an underlying igneous intrusion.
Structural dome on Baffin Island, seen in a planation surface.
Oblique aerial photo of Upheaval Dome, Utah. Now considered to be a deeply-eroded impact crater, it was for many years believed to be a salt dome.
Caprock of a salt diapir at Cape Breton, Nova Scotia. The white rocks at left center are the gypsum and anhydrite carapace of the diapir.

A dome is a feature in structural geology where a circular part of the Earth's surface has been pushed upward, tilting the pre-existing layers of earth away from the center. In technical terms, it consists of symmetrical anticlines that intersect each other at their respective apices. Intact, domes are distinct, rounded, spherical-to-ellipsoidal-shaped protrusions on the Earth's surface. A slice parallel to Earth's surface of a dome features concentric rings of strata. If the top of a dome has been eroded flat, the resulting structure in plan view appears as a bullseye, with the youngest rock layers at the outside, and each ring growing progressively older moving inwards. These strata would have been horizontal at the time of deposition, then later deformed by the uplift associated with dome formation.[1][2]

  1. ^ Fossen, Haakon (2016). Structural geology. Cambridge University Press. ISBN 978-1-316-47295-8.
  2. ^ Monroe, James S. and Reed Wicander. The Changing Earth: Exploring Geology and Evolution. 2nd ed. Belmont: Wadsworth Publishing Company, 1997. ISBN 0-314-09577-2

Previous Page Next Page