Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Effective population size

The effective population size (Ne) is the size of an idealised population that would experience the same rate of genetic drift as the real population.[1] Idealised populations are those following simple one-locus models that comply with assumptions of the neutral theory of molecular evolution. The effective population size is normally smaller than the census population size N, partly because chance events prevent some individuals from breeding, and partly due to background selection and genetic hitchhiking.

The same real population could have a different effective population size for different properties of interest, such as genetic drift (or more precisely, the speed of coalescence) over one generation vs. over many generations. Within a species, areas of the genome that have more genes and/or less genetic recombination tend to have lower effective population sizes, because of the effects of selection at linked sites. In a population with selection at many loci and abundant linkage disequilibrium, the coalescent effective population size may not reflect the census population size at all, or may reflect its logarithm.

The concept of effective population size was introduced in the field of population genetics in 1931 by the American geneticist Sewall Wright.[2][3] Some versions of the effective population size are used in wildlife conservation.

  1. ^ "Effective population size". Blackwell Publishing. Retrieved 4 March 2018.
  2. ^ Wright S (1931). "Evolution in Mendelian populations" (PDF). Genetics. 16 (2): 97–159. doi:10.1093/genetics/16.2.97. PMC 1201091. PMID 17246615.
  3. ^ Wright S (1938). "Size of population and breeding structure in relation to evolution". Science. 87 (2263): 430–431. doi:10.1126/science.87.2263.425-a.

Previous Page Next Page