Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Evolutionary taxonomy

Evolutionary taxonomy, evolutionary systematics or Darwinian classification is a branch of biological classification that seeks to classify organisms using a combination of phylogenetic relationship (shared descent), progenitor-descendant relationship (serial descent), and degree of evolutionary change. This type of taxonomy may consider whole taxa rather than single species, so that groups of species can be inferred as giving rise to new groups.[1] The concept found its most well-known form in the modern evolutionary synthesis of the early 1940s.

Evolutionary taxonomy differs from strict pre-Darwinian Linnaean taxonomy (producing orderly lists only) in that it builds evolutionary trees. While in phylogenetic nomenclature each taxon must consist of a single ancestral node and all its descendants, evolutionary taxonomy allows for groups to be excluded from their parent taxa (e.g. dinosaurs are not considered to include birds, but to have given rise to them), thus permitting paraphyletic taxa.[2][3]

  1. ^ Mayr, Ernst & Bock, W.J. (2002), "Classifications and other ordering systems" (PDF), J. Zool. Syst. Evol. Research, 40 (4): 169–94, doi:10.1046/j.1439-0469.2002.00211.x
  2. ^ Grant, V. (2003), "Incongruence between cladistic and taxonomic systems", American Journal of Botany, 90 (9): 1263–70, doi:10.3732/ajb.90.9.1263, PMID 21659226
  3. ^ Aubert, D (2015). "A formal analysis of phylogenetic terminology: Towards a reconsideration of the current paradigm in systematics". Phytoneuron. 2015–66: 1–54.

Previous Page Next Page