In mathematics, an expression is a written arrangement of symbols following the context-dependent, syntactic conventions of mathematical notation. Symbols can denote numbers, variables, operations, and functions.[1] Other symbols include punctuation marks and brackets, used for grouping where there is not a well-defined order of operations.
Expressions are commonly distinguished from formulas: expressions are a kind of mathematical object, whereas formulas are statements about mathematical objects.[2] This is analogous to natural language, where a noun phrase refers to an object, and a whole sentence refers to a fact. For example, is an expression, while the inequality is a formula.
To evaluate an expression means to find a numerical value equivalent to the expression.[3][4] Expressions can be evaluated or simplified by replacing operations that appear in them with their result. For example, the expression simplifies to , and evaluates to
An expression is often used to define a function, by taking the variables to be arguments, or inputs, of the function, and assigning the output to be the evaluation of the resulting expression.[5] For example, and define the function that associates to each number its square plus one. An expression with no variables would define a constant function. Usually, two expressions are considered equal or equivalent if they define the same function. Such an equality is called a "semantic equality", that is, both expressions "mean the same thing."