Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Feature selection

In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons:

The central premise when using feature selection is that data sometimes contains features that are redundant or irrelevant, and can thus be removed without incurring much loss of information.[9] Redundancy and irrelevance are two distinct notions, since one relevant feature may be redundant in the presence of another relevant feature with which it is strongly correlated.[10]

Feature extraction creates new features from functions of the original features, whereas feature selection finds a subset of the features. Feature selection techniques are often used in domains where there are many features and comparatively few samples (data points).

  1. ^ Gareth James; Daniela Witten; Trevor Hastie; Robert Tibshirani (2013). An Introduction to Statistical Learning. Springer. p. 204.
  2. ^ Brank, Janez; Mladenić, Dunja; Grobelnik, Marko; Liu, Huan; Mladenić, Dunja; Flach, Peter A.; Garriga, Gemma C.; Toivonen, Hannu; Toivonen, Hannu (2011), "Feature Selection", in Sammut, Claude; Webb, Geoffrey I. (eds.), Encyclopedia of Machine Learning, Boston, MA: Springer US, pp. 402–406, doi:10.1007/978-0-387-30164-8_306, ISBN 978-0-387-30768-8, retrieved 2021-07-13
  3. ^ Kramer, Mark A. (1991). "Nonlinear principal component analysis using autoassociative neural networks". AIChE Journal. 37 (2): 233–243. Bibcode:1991AIChE..37..233K. doi:10.1002/aic.690370209. ISSN 1547-5905.
  4. ^ Kratsios, Anastasis; Hyndman, Cody (2021). "NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation". Journal of Machine Learning Research. 22 (92): 1–51. ISSN 1533-7928.
  5. ^ Persello, Claudio; Bruzzone, Lorenzo (July 2014). "Relevant and invariant feature selection of hyperspectral images for domain generalization". 2014 IEEE Geoscience and Remote Sensing Symposium (PDF). IEEE. pp. 3562–3565. doi:10.1109/igarss.2014.6947252. ISBN 978-1-4799-5775-0. S2CID 8368258.
  6. ^ Hinkle, Jacob; Muralidharan, Prasanna; Fletcher, P. Thomas; Joshi, Sarang (2012). "Polynomial Regression on Riemannian Manifolds". In Fitzgibbon, Andrew; Lazebnik, Svetlana; Perona, Pietro; Sato, Yoichi; Schmid, Cordelia (eds.). Computer Vision – ECCV 2012. Lecture Notes in Computer Science. Vol. 7574. Berlin, Heidelberg: Springer. pp. 1–14. arXiv:1201.2395. doi:10.1007/978-3-642-33712-3_1. ISBN 978-3-642-33712-3. S2CID 8849753.
  7. ^ Yarotsky, Dmitry (2021-04-30). "Universal Approximations of Invariant Maps by Neural Networks". Constructive Approximation. 55: 407–474. arXiv:1804.10306. doi:10.1007/s00365-021-09546-1. ISSN 1432-0940. S2CID 13745401.
  8. ^ Hauberg, Søren; Lauze, François; Pedersen, Kim Steenstrup (2013-05-01). "Unscented Kalman Filtering on Riemannian Manifolds". Journal of Mathematical Imaging and Vision. 46 (1): 103–120. Bibcode:2013JMIV...46..103H. doi:10.1007/s10851-012-0372-9. ISSN 1573-7683. S2CID 8501814.
  9. ^ Kratsios, Anastasis; Hyndman, Cody (June 8, 2021). "NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation". Journal of Machine Learning Research. 22: 10312. Bibcode:2015NatSR...510312B. doi:10.1038/srep10312. PMC 4437376. PMID 25988841.
  10. ^ Cite error: The named reference guyon-intro was invoked but never defined (see the help page).

Previous Page Next Page