Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Forest floor

Forest floor of a temperate broadleaf forest showing leaf litter.

The forest floor, also called detritus or duff, is the part of a forest ecosystem that mediates between the living, aboveground portion of the forest and the mineral soil, principally composed of dead and decaying plant matter such as rotting wood and shed leaves.[1] In some countries, like Canada, forest floor refers to L, F and H organic horizons.[2] It hosts a wide variety of decomposers[3] and predators, including invertebrates, fungi, algae, bacteria, and archaea.

The forest floor serves as a bridge between the above ground living vegetation and the soil, and thus is a crucial component in nutrient transfer through the biogeochemical cycle. Leaf litter and other plant litter transmits nutrients from plants to the soil.[4] The plant litter of the forest floor (or L horizon) prevents erosion, conserves moisture, and provides nutrients to the entire ecosystem.[5] The F horizon consists of plant material in which decomposition is apparent, but the origins of plant residues are still distinguishable.[2] The H horizon consists of well-decomposed plant material so that plant residues are not recognizable, with the exception of some roots or wood.[2]

The nature of the distinction between organisms "in" the soil and components "of" the soil is disputed, with some questioning whether such a distinction exists at all.[6] The majority of carbon storage and biomass production in forests occurs below ground.[7] Despite this, conservation policy and scientific study tends to neglect the below-ground portion of the forest ecosystem.[8] As a crucial part of soil and the below-ground ecosystem,[9] the forest floor profoundly impacts the entire forest.

Much of the energy and carbon fixed by forests is periodically added to the forest floor through litterfall, and a substantial portion of the nutrient requirements of forest ecosystems is supplied by decomposition of organic matter in the forest floor and soil surface. Decomposers, such as arthropods and fungi, are necessary for the transformation of dead organic matter to usable nutrients. The sustained productivity of forests is closely linked with the decomposition of shed plant parts, particularly the nutrient-rich foliage. The forest floor is also an important fuel source in forest fires.

  1. ^ "Forest Floor, Definitions and Importance".
  2. ^ a b c Green, R.N.; Trowbridge, R.L.; Klinka, K. (1993). Towards a taxonomic classification of humus forms. Forest Science.
  3. ^ Ochoa-Hueso, R; Delgado-Baquerizo, M; King, PTA; Benham, M; Arca, V; Power, SA (February 2019). "Ecosystem type and resource quality are more important than global change drivers in regulating early stages of litter decomposition". Soil Biology and Biochemistry. 129: 144–152. Bibcode:2019SBiBi.129..144O. doi:10.1016/j.soilbio.2018.11.009. hdl:10261/336676. S2CID 92606851.
  4. ^ Zhang, Guangqi; Zhang, Ping; Peng, Shouzhang; Chen, Yunming; Cao, Yang (2017). "The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China". Scientific Reports. 7 (1): 11754. Bibcode:2017NatSR...711754Z. doi:10.1038/s41598-017-12199-5. PMC 5603570. PMID 28924160.
  5. ^ Stohr, Whitney J. (2013). "Belowground Ecosystems: The Foundation for Forest Health, Restoration and Sustainable Management". Journal of Environmental Assessment Policy and Management. 15 (4). doi:10.1142/S1464333213500191.
  6. ^ Gregory, Peter J. (2022). "RUSSELL REVIEW Are plant roots only "in" soil or are they "of" it? Roots, soil formation and function". European Journal of Soil Science. 73 (1). Bibcode:2022EuJSS..73E3219G. doi:10.1111/ejss.13219. S2CID 247053783.
  7. ^ Box, Olivia (22 October 2021). "Why the Belowground Ecosystem Matters". daily.jstor.org.
  8. ^ Stohr, Whitney J. (2013). "Belowground Ecosystems: The Foundation for Forest Health, Restoration and Sustainable Management". Journal of Environmental Assessment Policy and Management. 15 (4). doi:10.1142/S1464333213500191.
  9. ^ Veen, Ciska; Fry, Ellen L; ten Hooven, Freddy C.; Kardol, Paul; Morrien, Elly; De Long, Jonathan R. (2019). "The Role of Plant Litter in Driving Plant-Soil Feedbacks". Frontiers in Environmental Science. 7. doi:10.3389/fenvs.2019.00168. hdl:20.500.11755/5ca13e54-6718-4c4e-a6a3-e1dade0eaa68.

Previous Page Next Page






أرضية الغابة Arabic Skovbund Danish Metsakõdu ET کف جنگل FA Couche holorganique French 임상층 Korean Miško paklotė LT Лесная подстилка Russian Лісова підстилка Ukrainian

Responsive image

Responsive image