Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Galerkin method

In mathematics, in the area of numerical analysis, Galerkin methods are a family of methods for converting a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions. They are named after the Soviet mathematician Boris Galerkin.

Often when referring to a Galerkin method, one also gives the name along with typical assumptions and approximation methods used:

Examples of Galerkin methods are:

  1. ^ A. Ern, J.L. Guermond, Theory and practice of finite elements, Springer, 2004, ISBN 0-387-20574-8
  2. ^ "Georgii Ivanovich Petrov (on his 100th birthday)", Fluid Dynamics, May 2012, Volume 47, Issue 3, pp 289-291, DOI 10.1134/S0015462812030015
  3. ^ S. Brenner, R. L. Scott, The Mathematical Theory of Finite Element Methods, 2nd edition, Springer, 2005, ISBN 0-387-95451-1
  4. ^ P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1978, ISBN 0-444-85028-7
  5. ^ Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, 2003, ISBN 0-89871-534-2

Previous Page Next Page