In mathematics, in the area of numerical analysis, Galerkin methods are a family of methods for converting a continuous operator problem, such as a differential equation, commonly in a weak formulation, to a discrete problem by applying linear constraints determined by finite sets of basis functions. They are named after the Soviet mathematician Boris Galerkin.
Often when referring to a Galerkin method, one also gives the name along with typical assumptions and approximation methods used:
Bubnov–Galerkin method (after Ivan Bubnov) does not require the bilinear form to be symmetric and substitutes the energy minimization with orthogonality constraints determined by the same basis functions that are used to approximate the solution. In an operator formulation of the differential equation, Bubnov–Galerkin method can be viewed as applying an orthogonal projection to the operator.
Petrov–Galerkin method (after Georgii I. Petrov[2]) allows using basis functions for orthogonality constraints (called test basis functions) that are different from the basis functions used to approximate the solution. Petrov–Galerkin method can be viewed as an extension of Bubnov–Galerkin method, applying a projection that is not necessarily orthogonal in the operator formulation of the differential equation.