Our website is made possible by displaying online advertisements to our visitors.
Please consider supporting us by disabling your ad blocker.

Responsive image


Green's function

An animation that shows how Green's functions can be superposed to solve a differential equation subject to an arbitrary source.
If one knows the solution to a differential equation subject to a point source and the differential operator is linear, then one can superpose them to build the solution for a general source .

In mathematics, a Green's function (or Green function) is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.

This means that if is a linear differential operator, then

  • the Green's function is the solution of the equation , where is Dirac's delta function;
  • the solution of the initial-value problem is the convolution ().

Through the superposition principle, given a linear ordinary differential equation (ODE), , one can first solve , for each s, and realizing that, since the source is a sum of delta functions, the solution is a sum of Green's functions as well, by linearity of L.

Green's functions are named after the British mathematician George Green, who first developed the concept in the 1820s. In the modern study of linear partial differential equations, Green's functions are studied largely from the point of view of fundamental solutions instead.

Under many-body theory, the term is also used in physics, specifically in quantum field theory, aerodynamics, aeroacoustics, electrodynamics, seismology and statistical field theory, to refer to various types of correlation functions, even those that do not fit the mathematical definition. In quantum field theory, Green's functions take the roles of propagators.


Previous Page Next Page